On appelle somme de puissances toute suite de nombres complexes de la forme
où les et les sont fixés. Soit un polynôme unitaire, absolument irréductible, de degré au moins en . On démontre que les solutions de l’inégalité
sont paramétrées par un nombre fini de sommes de puissances. Par conséquent, on déduit la finitude des solutions de l’équation diophantienne
où est un polynôme non constant et est une somme de puissances non constante.
The ring of power sums is formed by complex functions on of the form
for some and . Let be absolutely irreducible, monic and of degree at least in . We consider Diophantine inequalities of the form
and show that all the solutions have parametrized by some power sums in a finite set. As a consequence, we prove that the equation
with not constant, monic in and not constant, has only finitely many solutions.
@article{JTNB_2007__19_2_547_0, author = {Scremin, Amedeo}, title = {Diophantine inequalities with power sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {547--560}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.601}, zbl = {1165.11036}, mrnumber = {2394901}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.601/} }
TY - JOUR AU - Scremin, Amedeo TI - Diophantine inequalities with power sums JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 547 EP - 560 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.601/ DO - 10.5802/jtnb.601 LA - en ID - JTNB_2007__19_2_547_0 ER -
Scremin, Amedeo. Diophantine inequalities with power sums. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 547-560. doi : 10.5802/jtnb.601. http://www.numdam.org/articles/10.5802/jtnb.601/
[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II. Acta Arithmetica 24 (1973), 33–36. | MR | Zbl
[2] P. Corvaja and U. Zannier, Diophantine Equations with Power Sums and Universal Hilbert Sets. Indag. Math., N.S. (3) 9 (1998), 317–332. | MR | Zbl
[3] P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. | MR | Zbl
[4] R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments. Acta Arithmetica (2) 42 (1983), 189–196. | MR | Zbl
[5] M. Eichler, Introduction to the theory of algebraic numbers and functions. Academic press, New York and London. (1966). | MR | Zbl
[6] J.-H Evertse, An improvement of the quantitative subspace theorem. Compositio Math. (3) 101 (1996), 225–311. | Numdam | MR | Zbl
[7] C. Fuchs, Exponential-Polynomial Equations and Linear Recurrences. PhD. thesis. Technische Universität Graz (2002).
[8] K. Iwasawa, Algebraic functions. Translations of Mathematical Monographs Vol. 118. American Mathematical Society, Providence, Rhode Island (1993). | MR | Zbl
[9] P. Kiss, Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. (1-4) 20 (1985), 285–293. | MR | Zbl
[10] A. Pethö, Perfect powers in second order linear recurrences. J. Number Theory 15 (1982), 5–13. | MR | Zbl
[11] W. M. Schmidt, Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. vol. 1467. Springer-Verlag (1991). | MR | Zbl
[12] W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. vol. 785. Springer-Verlag. (1980). | MR | Zbl
[13] A. Scremin, Tesi di Laurea “Equazioni e Disequazioni Diofantee Esponenziali”. Università degli Studi di Udine (2001).
[14] T. N. Shorey and C. L. Stewart, Pure powers in Recurrence Sequences and Some Related Diophantine Equations. J. Number Theory 27 (1987), 324–352. | MR | Zbl
Cité par Sources :