La diaphonie diadique est une mesure quantitative pour l’irrégularité de la distribution d’une suite dans le cube unitaire. Dans cet article nous donnons des formules pour la diaphonie diadique des -suites digitales sur , . Ces formules montrent que, pour fixé, la diaphonie diadique a les mêmes valeurs pour chaque -suite digitale. Pour , il résulte que la diaphonie diadique et la diaphonie des -suites digitales particulières sont égales, en faisant abstraction d’une constante. On détermine l’ordre asymptotique exact de la diaphonie diadique des -suites digitales et on montre que pour elle satisfait un théorème de la limite centrale.
The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital -sequences over , . These formulae show that for fixed , the dyadic diaphony has the same values for any digital -sequence. For , it follows that the dyadic diaphony and the diaphony of special digital -sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital -sequences and show that for it satisfies a central limit theorem.
@article{JTNB_2007__19_2_501_0, author = {Pillichshammer, Friedrich}, title = {Dyadic diaphony of digital sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {501--521}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.599}, zbl = {1152.11036}, mrnumber = {2394899}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.599/} }
TY - JOUR AU - Pillichshammer, Friedrich TI - Dyadic diaphony of digital sequences JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 501 EP - 521 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.599/ DO - 10.5802/jtnb.599 LA - en ID - JTNB_2007__19_2_501_0 ER -
Pillichshammer, Friedrich. Dyadic diaphony of digital sequences. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 501-521. doi : 10.5802/jtnb.599. http://www.numdam.org/articles/10.5802/jtnb.599/
[1] H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. | MR | Zbl
[2] J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149–195. | MR | Zbl
[3] J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over . Monatsh. Math. 145 (2005), 285–299. | MR
[4] J. Dick and F. Pillichshammer, On the mean square weighted -discrepancy of randomized digital -nets over . Acta Arith. 117 (2005), 371–403. | MR | Zbl
[5] J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70 (2005), 159–171. | MR
[6] M. Drmota, G. Larcher and F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11–41. | MR | Zbl
[7] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. | MR | Zbl
[8] H. Faure, Discrepancy and diaphony of digital -sequences in prime base. Acta Arith. 117 (2004), 125–148. | MR | Zbl
[9] H. Faure, Irregularites of distribution of digital -sequences in prime base. Integers 5 (2005), A7, 12 pages. | MR | Zbl
[10] V.S. Grozdanov, On the diaphony of one class of one-dimensional sequences. Internat. J. Math. Math. Sci. 19 (1996), 115–124. | MR | Zbl
[11] P. Hellekalek and H. Leeb, Dyadic diaphony. Acta Arith. 80 (1997), 187–196. | MR | Zbl
[12] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. | MR | Zbl
[13] G. Larcher, H. Niederreiter and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121 (1996), 231–253. | MR | Zbl
[14] G. Larcher and F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. | MR | Zbl
[15] H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337. | MR | Zbl
[16] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992. | MR | Zbl
[17] F. Pillichshammer, Digital sequences with best possible order of –discrepancy. Mathematika 53 (2006), 149–160. | MR | Zbl
[18] P.D. Proinov and V.S. Grozdanov, On the diaphony of the van der Corput-Halton sequence. J. Number Theory 30 (1988), 94–104. | MR | Zbl
[19] P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121–132. | MR | Zbl
Cité par Sources :