La diaphonie diadique est une mesure quantitative pour l’irrégularité de la distribution d’une suite dans le cube unitaire. Dans cet article nous donnons des formules pour la diaphonie diadique des
The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital
@article{JTNB_2007__19_2_501_0, author = {Pillichshammer, Friedrich}, title = {Dyadic diaphony of digital sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {501--521}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.599}, zbl = {1152.11036}, mrnumber = {2394899}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.599/} }
TY - JOUR AU - Pillichshammer, Friedrich TI - Dyadic diaphony of digital sequences JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 501 EP - 521 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.599/ DO - 10.5802/jtnb.599 LA - en ID - JTNB_2007__19_2_501_0 ER -
Pillichshammer, Friedrich. Dyadic diaphony of digital sequences. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 501-521. doi : 10.5802/jtnb.599. https://www.numdam.org/articles/10.5802/jtnb.599/
[1] H. Chaix and H. Faure, Discrépance et diaphonie en dimension un. Acta Arith. 63 (1993), 103–141. | MR | Zbl
[2] J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21 (2005), 149–195. | MR | Zbl
[3] J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over
[4] J. Dick and F. Pillichshammer, On the mean square weighted
[5] J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70 (2005), 159–171. | MR
[6] M. Drmota, G. Larcher and F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences. Manuscripta Math. 118 (2005), 11–41. | MR | Zbl
[7] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997. | MR | Zbl
[8] H. Faure, Discrepancy and diaphony of digital
[9] H. Faure, Irregularites of distribution of digital
[10] V.S. Grozdanov, On the diaphony of one class of one-dimensional sequences. Internat. J. Math. Math. Sci. 19 (1996), 115–124. | MR | Zbl
[11] P. Hellekalek and H. Leeb, Dyadic diaphony. Acta Arith. 80 (1997), 187–196. | MR | Zbl
[12] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. | MR | Zbl
[13] G. Larcher, H. Niederreiter and W.Ch. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121 (1996), 231–253. | MR | Zbl
[14] G. Larcher and F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. | MR | Zbl
[15] H. Niederreiter, Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), 273–337. | MR | Zbl
[16] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992. | MR | Zbl
[17] F. Pillichshammer, Digital sequences with best possible order of
[18] P.D. Proinov and V.S. Grozdanov, On the diaphony of the van der Corput-Halton sequence. J. Number Theory 30 (1988), 94–104. | MR | Zbl
[19] P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121–132. | MR | Zbl
Cité par Sources :