Nous étudions les conjectures de Malle pour les groupes diédraux d’ordre , où est un nombre premier impair. Nous prouvons que les bornes inférieures sont celles attendues. Pour les bornes supérieures, nous montrons qu’il y a un lien avec les groupes de classes des corps quadratiques. Le comportement asymptotique de ces groupes de classes est prédit par les heuristiques de Cohen–Lenstra. Sous ces hypothèses, nous pouvons montrer que les bornes supérieures sont celles attendues.
We study the asymptotics conjecture of Malle for dihedral groups of order , where is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen–Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.
@article{JTNB_2006__18_3_607_0, author = {Kl\"uners, J\"urgen}, title = {Asymptotics of number fields and the {Cohen{\textendash}Lenstra} heuristics}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {607--615}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {3}, year = {2006}, doi = {10.5802/jtnb.561}, zbl = {1142.11078}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.561/} }
TY - JOUR AU - Klüners, Jürgen TI - Asymptotics of number fields and the Cohen–Lenstra heuristics JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 607 EP - 615 VL - 18 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.561/ DO - 10.5802/jtnb.561 LA - en ID - JTNB_2006__18_3_607_0 ER -
%0 Journal Article %A Klüners, Jürgen %T Asymptotics of number fields and the Cohen–Lenstra heuristics %J Journal de théorie des nombres de Bordeaux %D 2006 %P 607-615 %V 18 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.561/ %R 10.5802/jtnb.561 %G en %F JTNB_2006__18_3_607_0
Klüners, Jürgen. Asymptotics of number fields and the Cohen–Lenstra heuristics. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 3, pp. 607-615. doi : 10.5802/jtnb.561. http://www.numdam.org/articles/10.5802/jtnb.561/
[1] H. Cohen, Advanced Topics in Computational Number Theory. Springer, Berlin, 2000. | MR | Zbl
[2] H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of . Compositio Math. 133 (2002), 65–93. | MR | Zbl
[3] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups of number fields. In: Number theory, Noordwijkerhout 1983, volume 1068 of Lecture Notes in Math., pages 33–62. Springer, Berlin, 1984. | MR | Zbl
[4] B. Datskovsky, D. Wright, Density of discriminants of cubic extensions. J. reine angew. Math 386 (1988), 116–138. | MR | Zbl
[5] J. Ellenberg, A. Venkatesh, Reflection principles and bounds for class group torsion. To appear in Int. Math. Res. Not. | MR
[6] J. Klüners, C. Fieker, Minimal discriminants for small fields with Frobenius groups as Galois groups. J. Numb. Theory 99 (2003), 318–337. | MR | Zbl
[7] J. Klüners, A counterexample to Malle’s conjecture on the asymptotics of discriminants. C. R. Math. Acad. Sci. Paris 340 (2005), 411–414. | Zbl
[8] J. Klüners, G. Malle, Counting nilpotent Galois extensions. J. Reine Angew. Math. 572 (2004), 1–26. | MR | Zbl
[9] S. Lang, Algebraic Number Theory. Springer, Berlin-Heidelberg-New York, 1986. | MR | Zbl
[10] G. Malle, On the distribution of Galois groups. J. Numb. Theory 92 (2002), 315–322. | MR | Zbl
[11] G. Malle, On the distribution of Galois groups II. Exp. Math. 13 (2004), 129–135. | MR | Zbl
Cité par Sources :