Soit un corps de caractéristique différente de , et . Nous donnons un algorithme simple pour trouver, étant donné , une solution non-triviale dans (si elle existe) à l’équation . Dans certains cas, l’algorithme a besoin d’une solution d’une équation similaire à coefficients dans ; nous obtenons alors un algorithme récursif pour résoudre les coniques diagonales sur (en utilisant les algorithmes existants pour telles équations sur ) et sur .
Let be a field whose characteristic is not and . We give a simple algorithm to find, given , a nontrivial solution in (if it exists) to the equation . The algorithm requires, in certain cases, the solution of a similar equation with coefficients in ; hence we obtain a recursive algorithm for solving diagonal conics over (using existing algorithms for such equations over ) and over .
@article{JTNB_2006__18_3_595_0, author = {van Hoeij, Mark and Cremona, John}, title = {Solving conics over function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {595--606}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {3}, year = {2006}, doi = {10.5802/jtnb.560}, zbl = {1129.11053}, mrnumber = {2330429}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.560/} }
TY - JOUR AU - van Hoeij, Mark AU - Cremona, John TI - Solving conics over function fields JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 595 EP - 606 VL - 18 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.560/ DO - 10.5802/jtnb.560 LA - en ID - JTNB_2006__18_3_595_0 ER -
van Hoeij, Mark; Cremona, John. Solving conics over function fields. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 3, pp. 595-606. doi : 10.5802/jtnb.560. http://www.numdam.org/articles/10.5802/jtnb.560/
[CM98] T. Cochrane, P. Mitchell, Small solutions of the Legendre equation. J. Number Theory 70 (1998), no. 1, pp. 62–66. | MR | Zbl
[CR03] J. Cremona, D. Rusin, Efficient solution of rational conics. Math. Comp. 72 (2003), no. 243, pp. 1417–1441. | MR | Zbl
[Gauss] C. F. Gauss, Disquisitiones Arithmeticae. Springer-Verlag, 1986. | MR | Zbl
[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), no. 4, pp. 515–534. | MR | Zbl
[Magma] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24 (1997), 235–265. Computational algebra and number theory (London, 1993). See also http://magma.maths.usyd.edu.au/magma/. | MR | Zbl
[Maple] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, Maple 6 Programming Guide. Waterloo Maple Inc. (Waterloo, Canada, 2000).
[R97] M. Reid, Chapters on Algebraic Surfaces, Chapter C: Guide to the classification of surfaces. In J. Kollár (Ed.), IAS/Park City lecture notes series 3 (1993), AMS, Providence R.I., 1997, 1–154. See also www.maths.warwick.ac.uk/~miles/surf/ParkC/chC.ps. | MR | Zbl
[Sch98] J. Schicho, Rational parametrization of real algebraic surfaces. Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York, 1998, 302–308. | MR | Zbl
[Sch00] J. Schicho, Proper parametrization of surfaces with a rational pencil. Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), ACM, New York, 2000, 292–300. | MR
[S05] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms. Math. Comp. 74 (2005), no. 251, pp. 1531–1543. | MR | Zbl
[W06] C. van de Woestijne, Surface Parametrisation without Diagonalisation. Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation (Genoa), ACM, New York, 2006, 340–344. | MR
Cité par Sources :