Pour tout groupe de permutations transitif sur lettres avec nous donnons sans démonstration des résultats, des conjectures et des calculs numériques sur le nombre de discriminants de corps de nombres de degré sur tels que le groupe de Galois de la clôture galoisienne de soit isomorphe à .
For each transitive permutation group on letters with , we give without proof results, conjectures, and numerical computations on discriminants of number fields of degree over such that the Galois group of the Galois closure of is isomorphic to .
@article{JTNB_2006__18_3_573_0, author = {Cohen, Henri and Diaz y Diaz, Francisco and Olivier, Michel}, title = {Counting discriminants of number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {573--593}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {3}, year = {2006}, doi = {10.5802/jtnb.559}, mrnumber = {2330428}, zbl = {1193.11109}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.559/} }
TY - JOUR AU - Cohen, Henri AU - Diaz y Diaz, Francisco AU - Olivier, Michel TI - Counting discriminants of number fields JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 573 EP - 593 VL - 18 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.559/ DO - 10.5802/jtnb.559 LA - en ID - JTNB_2006__18_3_573_0 ER -
%0 Journal Article %A Cohen, Henri %A Diaz y Diaz, Francisco %A Olivier, Michel %T Counting discriminants of number fields %J Journal de théorie des nombres de Bordeaux %D 2006 %P 573-593 %V 18 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.559/ %R 10.5802/jtnb.559 %G en %F JTNB_2006__18_3_573_0
Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel. Counting discriminants of number fields. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 3, pp. 573-593. doi : 10.5802/jtnb.559. http://www.numdam.org/articles/10.5802/jtnb.559/
[1] A. Baily, On the density of discriminants of quartic fields. J. reine angew. Math. 315 (1980), 190–210. | MR | Zbl
[2] K. Belabas, A fast algorithm to compute cubic fields. Math. Comp. 66 (1997), 1213–1237. | MR | Zbl
[3] K. Belabas, On quadratic fields with large -rank. Math. Comp. 73 (2004), 2061–2074. | MR | Zbl
[4] K. Belabas, M. Bhargava, C. Pomerance, Error estimates for the Davenport–Heilbronn theorems. Preprint available at http://www.math.u-bordeaux1.fr/~belabas/pub/
[5] M. Bhargava, Higher Composition Laws I, II, III, IV. | Zbl
[6] H. Cohen, A course in computational algebraic number theory (fourth printing). GTM 138, Springer-Verlag, 2000. | MR | Zbl
[7] H. Cohen, Advanced topics in computational number theory. GTM 193, Springer-Verlag, 2000. | MR | Zbl
[8] H. Cohen, Comptage exact de discriminants d’extensions abéliennes. J. Th. Nombres Bordeaux 12 (2000), 379–397. | Numdam | Zbl
[9] H. Cohen, Enumerating quartic dihedral extensions of with signatures. Ann. Institut Fourier 53 (2003) 339–377. | Numdam | MR | Zbl
[10] H. Cohen, High precision computation of Hardy-Littlewood constants. Preprint available on the author’s web page at the URL http://www.math.u-bordeaux.fr/~cohen.
[11] H. Cohen, Counting and extensions of number fields with given resolvent cubic, in “High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams”. Fields Institute Comm. 41 (2004), 159–168. | Zbl
[12] H. Cohen, Constructing and counting number fields. Proceedings ICM 2002 Beijing vol II, Higher Education Press, China (2002), 129–138. | MR | Zbl
[13] H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of . Compositio Math. 133 (2002), 65–93. | MR | Zbl
[14] H. Cohen, F. Diaz y Diaz, M. Olivier, Construction of tables of quartic fields using Kummer theory. Proceedings ANTS IV, Leiden (2000), Lecture Notes in Computer Science 1838, Springer-Verlag, 257–268. | MR | Zbl
[15] H. Cohen, F. Diaz y Diaz, M. Olivier, Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 72 (2003) 941–951. | MR | Zbl
[16] H. Cohen, F. Diaz y Diaz, M. Olivier, Densité des discriminants des extensions cycliques de degré premier. C. R. Acad. Sci. Paris 330 (2000), 61–66. | MR | Zbl
[17] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree. J. reine angew. Math. 550 (2002), 169–209. | MR | Zbl
[18] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields. Indag. Math. (N.S.) 14 (2003), 183–196. | MR | Zbl
[19] H. Cohn, The density of abelian cubic fields. Proc. Amer. Math. Soc. 5 (1954), 476–477. | MR | Zbl
[20] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions. J. reine angew. Math. 386 (1988), 116–138. | MR | Zbl
[21] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields I. Bull. London Math. Soc. 1 (1969), 345–348. | MR | Zbl
[22] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields II. Proc. Royal. Soc. A 322 (1971), 405–420. | MR | Zbl
[23] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschrift 31 (1930), 565–582. | MR
[24] J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants. C. R. Acad. Sci. Paris 340 (2005), 411–414. | Zbl
[25] S. Mäki, On the density of abelian number fields. Thesis, Helsinki, 1985. | MR
[26] S. Mäki, The conductor density of abelian number fields. J. London Math. Soc. (2) 47 (1993), 18–30. | MR | Zbl
[27] G. Malle, On the distribution of Galois groups. J. Number Th. 92 (2002), 315–329. | MR | Zbl
[28] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129–135. | MR | Zbl
[29] G. Malle, The totally real primitive number fields of discriminant at most . Proceedings ANTS VII (Berlin), 2006, Springer Lecture Notes in Computer Science XXX. | MR
[30] D. Roberts, Density of cubic field discriminants. Math. Comp. 70 (2001), 1699–1705. | MR | Zbl
[31] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés SMF 1, Société Mathématique de France, 1995. | MR | Zbl
[32] D. J. Wright, Distribution of discriminants of Abelian extensions. Proc. London Math. Soc. (3) 58 (1989), 17–50. | MR | Zbl
[33] D. J. Wright, personal communication.
[34] D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions. Invent. Math. 110 (1992), 283–314. | MR | Zbl
Cité par Sources :