Soient un corps de nombres et une extension galoisienne de qui n’est pas algébriquement close. Alors n’est pas PAC sur .
We prove that if is a number field and is a Galois extension of which is not algebraically closed, then is not PAC over .
@article{JTNB_2006__18_2_371_0, author = {Jarden, Moshe}, title = {PAC fields over number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {371--377}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.550}, zbl = {05135402}, mrnumber = {2289430}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.550/} }
Jarden, Moshe. PAC fields over number fields. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 371-377. doi : 10.5802/jtnb.550. http://www.numdam.org/articles/10.5802/jtnb.550/
[1] M. D. Fried, M. Jarden, Field Arithmetic. Second edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005. | MR | Zbl
[2] W.-D. Geyer, M. Jarden, PSC Galois extensions of Hilbertian fields. Mathematische Nachrichten 236 (2002), 119–160. | MR | Zbl
[3] G. J. Janusz, Algebraic Number Fields. Academic Press, New York, 1973. | MR | Zbl
[4] M. Jarden, A. Razon, Pseudo algebraically closed fields over rings. Israel Journal of Mathematics 86 (1994), 25–59. | MR | Zbl
[5] M. Jarden, A. Razon, Rumely’s local global principle for algebraic PC fields over rings. Transactions of AMS 350 (1998), 55–85. | MR | Zbl
[6] S. Lang, Introduction to Algebraic Geometry. Interscience Publishers, New York, 1958. | MR | Zbl
[7] J. Neukirch, Kennzeichnung der -adischen und der endlichen algebraischen Zahlkörper. Inventiones mathematicae 6 (1969), 296–314. | MR | Zbl
[8] A. Razon, Splitting of . Archiv der Mathematik 74 (2000), 263–265 | MR | Zbl
Cité par Sources :