Nous répondons à trois questions concernant la réductibilité (ou irréductibilité) de -polynômes, polynômes qui n’ont pour seuls coefficients que 0 ou 1. La première question est de déterminer si une suite de polynômes qui se présente naturellement est finie. Deuxièmement, nous discutons si tout sous-ensemble fini d’un ensemble infini de nombres entiers positifs peut être l’ensemble des exposants d’un -polynôme réductible. La troisième question est similaire, mais pour l’ensemble des exposants d’un polynôme irréductible.
We answer three reducibility (or irreducibility) questions for -polynomials, those polynomials which have every coefficient either or . The first concerns whether a naturally occurring sequence of reducible polynomials is finite. The second is whether every nonempty finite subset of an infinite set of positive integers can be the set of positive exponents of a reducible -polynomial. The third is the analogous question for exponents of irreducible -polynomials.
@article{JTNB_2006__18_2_357_0, author = {Filaseta, Michael and Finch, Carrie and Nicol, Charles}, title = {On three questions concerning ${0,1}$-polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {357--370}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.549}, zbl = {05135395}, mrnumber = {2289429}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.549/} }
TY - JOUR AU - Filaseta, Michael AU - Finch, Carrie AU - Nicol, Charles TI - On three questions concerning ${0,1}$-polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 357 EP - 370 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.549/ DO - 10.5802/jtnb.549 LA - en ID - JTNB_2006__18_2_357_0 ER -
%0 Journal Article %A Filaseta, Michael %A Finch, Carrie %A Nicol, Charles %T On three questions concerning ${0,1}$-polynomials %J Journal de théorie des nombres de Bordeaux %D 2006 %P 357-370 %V 18 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.549/ %R 10.5802/jtnb.549 %G en %F JTNB_2006__18_2_357_0
Filaseta, Michael; Finch, Carrie; Nicol, Charles. On three questions concerning ${0,1}$-polynomials. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 357-370. doi : 10.5802/jtnb.549. http://www.numdam.org/articles/10.5802/jtnb.549/
[1] M. Filaseta, On the factorization of polynomials with small Euclidean norm. Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 143–163. | MR | Zbl
[2] M. Filaseta, K. Ford, S. Konyagin, On an irreducibility theorem of A. Schinzel associated with coverings of the integers. Illinois J. Math. 44 (2000), 633–643. | MR | Zbl
[3] M. Filaseta, A. Schinzel, On testing the divisibility of lacunary polynomials by cyclotomic polynomials. Math. Comp. 73 (2004), 957–965. | MR | Zbl
[4] W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials. Math. Scand. 8 (1960), 65–70. | MR | Zbl
[5] H. B. Mann, On linear relations between roots of unity. Mathematika 12 (1965), 107–117. | MR | Zbl
[6] A. Schinzel, On the reducibility of polynomials and in particular of trinomials. Acta Arith. 11 (1965), 1–34. | MR | Zbl
[7] A. Schinzel, Selected topics on polynomials. Ann Arbor, Mich., University of Michigan Press, 1982. | MR | Zbl
[8] H. Tverberg, On the irreducibility of the trinomials . Math. Scand. 8 (1960), 121–126. | MR | Zbl
Cité par Sources :