Nous montrons que l’équation diophantienne ci-dessus n’admet pas de solutions entières , telles que et . La démonstration utilise les courbes de Frey et des résultats liés à la modularité des représentations galoisiennes.
We show that the Diophantine equation of the title has, for , no solution in coprime nonzero integers and . Our proof relies upon Frey curves and related results on the modularity of Galois representations.
@article{JTNB_2006__18_2_315_0, author = {Bennett, Michael A.}, title = {The equation $x^{2n}+y^{2n}=z^5$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {315--321}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.546}, zbl = {05135392}, mrnumber = {2289426}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.546/} }
TY - JOUR AU - Bennett, Michael A. TI - The equation $x^{2n}+y^{2n}=z^5$ JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 315 EP - 321 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.546/ DO - 10.5802/jtnb.546 LA - en ID - JTNB_2006__18_2_315_0 ER -
Bennett, Michael A. The equation $x^{2n}+y^{2n}=z^5$. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 315-321. doi : 10.5802/jtnb.546. http://www.numdam.org/articles/10.5802/jtnb.546/
[1] A. Battaglia, Impossibilità dell’equazione indeterminata . Archimede 20 (1968), 300–305. | MR | Zbl
[2] M.A. Bennett, C. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. | MR | Zbl
[3] N. Bruin, On powers as sums of two cubes. Algorithmic number theory (Leiden, 2000), 169–184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000. | MR | Zbl
[4] J. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, 1992. | MR | Zbl
[5] H. Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem. Duke. Math. J. 102 (2000), 413–449. | MR | Zbl
[6] H. Darmon, A. Granville, On the equations and . Bull. London Math. Soc. 27 (1995), 513–543. | MR | Zbl
[7] H. Darmon, L. Merel, Winding quotients and some variants of Fermat’s Last Theorem. J. Reine Angew Math. 490 (1997), 81–100. | MR | Zbl
[8] J. S. Ellenberg, Galois representations attached to -curves and the generalized Fermat equation . Amer. J. Math. 126 (2004), 763–787. | MR | Zbl
[9] A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Canad. J. Math. 49 (1997), 1139–1161. | MR | Zbl
[10] A. Kraus, On the equation : a survey. Ramanujan J. 3 (1999), 315–333. | MR | Zbl
[11] R.D. Mauldin, A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Amer. Math. Soc. 44 (1997), 1436–1437. | MR | Zbl
[12] L. Merel, Arithmetic of elliptic curves and Diophantine equations. J. Théor. Nombres Bordeaux 11 (1999), 173–200. | Numdam | MR | Zbl
[13] K. Ribet, On modular representations of arising from modular forms. Invent. Math. 100 (1990), 431–476. | MR | Zbl
[14] W. Stein, Modular forms database. http://modular.fas.harvard.edu/Tables/
[15] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), 443–551. | MR | Zbl
Cité par Sources :