Nous examinons une classe spéciale de
We study a special class of
@article{JTNB_2006__18_1_203_0, author = {Kritzer, Peter}, title = {On some remarkable properties of the two-dimensional {Hammersley} point set in base 2}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {203--221}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.540}, zbl = {1103.11024}, mrnumber = {2245882}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.540/} }
TY - JOUR AU - Kritzer, Peter TI - On some remarkable properties of the two-dimensional Hammersley point set in base 2 JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 203 EP - 221 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.540/ DO - 10.5802/jtnb.540 LA - en ID - JTNB_2006__18_1_203_0 ER -
%0 Journal Article %A Kritzer, Peter %T On some remarkable properties of the two-dimensional Hammersley point set in base 2 %J Journal de théorie des nombres de Bordeaux %D 2006 %P 203-221 %V 18 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.540/ %R 10.5802/jtnb.540 %G en %F JTNB_2006__18_1_203_0
Kritzer, Peter. On some remarkable properties of the two-dimensional Hammersley point set in base 2. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 203-221. doi : 10.5802/jtnb.540. https://www.numdam.org/articles/10.5802/jtnb.540/
[1] L. De Clerck, A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley. Monatsh. Math. 101 (1986), 261–278. | MR | Zbl
[2] J. Dick, P. Kritzer, Star-discrepancy estimates for digital
[3] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer, Berlin, 1997. | MR | Zbl
[4] H. Faure, On the star-discrepancy of generalized Hammersley sequences in two dimensions. Monatsh. Math. 101 (1986), 291–300. | MR | Zbl
[5] J. H. Halton, S. K. Zaremba, The extreme and the
[6] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. | MR | Zbl
[7] G. Larcher, F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. | MR | Zbl
[8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS–NSF Series in Applied Mathematics 63, SIAM, Philadelphia, 1992. | MR | Zbl
[9] F. Zhang, Matrix Theory. Springer, New York, 1999. | MR | Zbl
Cité par Sources :