Dans cet article nous prolongeons la construction de Champernowne de nombres normaux dans la base pour le cas , et obtenons une construction explicite du point générique de la transformation de l’ensemble par déplacement. Nous prouvons que l’intersection de la configuration de réseau considérée avec une droite arbitraire est une suite normale dans la base .
In this paper we extend Champernowne’s construction of normal numbers in base to the case and obtain an explicit construction of the generic point of the shift transformation of the set . We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base .
@article{JTNB_2005__17_3_825_0, author = {Levin, Mordechay B. and Smorodinsky, Meir}, title = {On linear normal lattices configurations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {825--858}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.523}, zbl = {05016590}, mrnumber = {2212128}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.523/} }
TY - JOUR AU - Levin, Mordechay B. AU - Smorodinsky, Meir TI - On linear normal lattices configurations JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 825 EP - 858 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.523/ DO - 10.5802/jtnb.523 LA - en ID - JTNB_2005__17_3_825_0 ER -
%0 Journal Article %A Levin, Mordechay B. %A Smorodinsky, Meir %T On linear normal lattices configurations %J Journal de théorie des nombres de Bordeaux %D 2005 %P 825-858 %V 17 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.523/ %R 10.5802/jtnb.523 %G en %F JTNB_2005__17_3_825_0
Levin, Mordechay B.; Smorodinsky, Meir. On linear normal lattices configurations. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 825-858. doi : 10.5802/jtnb.523. http://www.numdam.org/articles/10.5802/jtnb.523/
[1] R. Adler, M. Keane, M. Smorodinsky, A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13 (1981), 95–105. | MR | Zbl
[2] D. J. Champernowne, The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254–260. | Zbl
[3] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math. 64 (1960), 201–225. | MR | Zbl
[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Math, vol. 1651, Springer, 1997. | MR | Zbl
[5] T. Kamae, Subsequences of normal sequences. Israel J. Math. 16 (1973), 121–149. | MR | Zbl
[6] N. M. Korobov, Exponential Sums and their Applications. Kluwer Academic Publishers, Dordrecht, 1992. | MR | Zbl
[7] L. Kuipers , H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics, Wiley–Interscience, New York, 1974. | MR | Zbl
[8] P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences. Manuscripta Math. 35 (1981), 195–207. | MR | Zbl
[9] M. B. Levin, On normal lattice configurations and simultaneously normal numbers. J. Théor. Nombres Bordeaux 13 (2001), 483–527. | Numdam | MR | Zbl
[10] M. B. Levin, Discrepancy estimate of completely uniform distributed double sequences. In preparation.
[11] M. B. Levin, M. Smorodinsky, A generalisation of the Davenport–Erdös construction of normal numbers. Colloq. Math. 84/85 (2000), 431–441. | MR | Zbl
[12] M. B. Levin, M. Smorodinsky, Explicit construction of normal lattice configurations. Colloq. Math. 102 (2005), 33–47. | MR | Zbl
[13] M. B. Levin, M. Smorodinsky, On polynomial normal lattice configurations. Monatsh. Math. (2005) | MR | Zbl
[14] A. G. Postnikov, Arithmetic modeling of random processes. Proc. Steklov. Inst. Math. 57 (1960), 84 pp. | MR | Zbl
[15] M. Smorodinsky, B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts. Israel J. Math. 59 (1987), 225–233. | MR | Zbl
[16] B. Weiss, Normal sequences as collectives. Proc. Symp. on Topological Dynamics and Ergodic Theory, Univ. of Kentucky, 1971.
Cité par Sources :