Kronecker-Weber via Stickelberger
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 555-558.

Nous donnons une nouvelle démonstration du théorème de Kronecker et Weber fondée sur la théorie de Kummer et le théorème de Stickelberger.

In this note we give a new proof of the theorem of Kronecker-Weber based on Kummer theory and Stickelberger’s theorem.

DOI : 10.5802/jtnb.507
Lemmermeyer, Franz 1

1 Department of Mathematics Bilkent University 06800 Bilkent, Ankara, Turkey
@article{JTNB_2005__17_2_555_0,
     author = {Lemmermeyer, Franz},
     title = {Kronecker-Weber via {Stickelberger}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {555--558},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.507},
     zbl = {1103.11030},
     mrnumber = {2211307},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.507/}
}
TY  - JOUR
AU  - Lemmermeyer, Franz
TI  - Kronecker-Weber via Stickelberger
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 555
EP  - 558
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.507/
DO  - 10.5802/jtnb.507
LA  - en
ID  - JTNB_2005__17_2_555_0
ER  - 
%0 Journal Article
%A Lemmermeyer, Franz
%T Kronecker-Weber via Stickelberger
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 555-558
%V 17
%N 2
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.507/
%R 10.5802/jtnb.507
%G en
%F JTNB_2005__17_2_555_0
Lemmermeyer, Franz. Kronecker-Weber via Stickelberger. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 555-558. doi : 10.5802/jtnb.507. http://www.numdam.org/articles/10.5802/jtnb.507/

[1] M.J. Greenberg, An elementary proof of the Kronecker-Weber theorem. Amer. Math. Monthly 81 (1974), 601–607; corr.: ibid. 82 (1975), 803 | MR | Zbl

[2] D. Hilbert, Ein neuer Beweis des Kronecker’schen Fundamentalsatzes über Abel’sche Zahlkörper. Gött. Nachr. (1896), 29–39

[3] D. Hilbert, Die Theorie der algebraischen Zahlkörper. Jahresber. DMV 1897, 175–546; Gesammelte Abh. I, 63–363; Engl. Transl. by I. Adamson, Springer-Verlag 1998

[4] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory. Springer Verlag 1982; 2nd ed. 1990 | MR | Zbl

[5] F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein. Springer Verlag 2000 | MR | Zbl

[6] D. Marcus, Number Fields. Springer-Verlag 1977 | MR | Zbl

[7] A. Speiser, Die Zerlegungsgruppe. J. Reine Angew. Math. 149 (1919), 174–188

[8] E. Steinbacher, Abelsche Körper als Kreisteilungskörper. J. Reine Angew. Math. 139 (1910), 85–100

[9] L. Washington, Introduction to Cyclotomic Fields. Springer-Verlag 1982 | MR | Zbl

Cité par Sources :