Soit un anneau principal et un -module de torsion de type fini. Nous donnons une preuve élémentaire du fait que tout automorphisme de -algèbre de est intérieur.
Let be a principal ideal domain and a torsion -module of finite type. We give an elementary proof of the fact that any -algebra automorphism of is inner.
@article{JTNB_2005__17_2_511_0, author = {Cortella, Anne and Tignol, Jean-Pierre}, title = {Le th\'eor\`eme de {Skolem-Noether} pour les modules sur des anneaux principaux}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {511--516}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {2}, year = {2005}, doi = {10.5802/jtnb.504}, zbl = {1092.13011}, mrnumber = {2211304}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/jtnb.504/} }
TY - JOUR AU - Cortella, Anne AU - Tignol, Jean-Pierre TI - Le théorème de Skolem-Noether pour les modules sur des anneaux principaux JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 511 EP - 516 VL - 17 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.504/ DO - 10.5802/jtnb.504 LA - fr ID - JTNB_2005__17_2_511_0 ER -
%0 Journal Article %A Cortella, Anne %A Tignol, Jean-Pierre %T Le théorème de Skolem-Noether pour les modules sur des anneaux principaux %J Journal de théorie des nombres de Bordeaux %D 2005 %P 511-516 %V 17 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.504/ %R 10.5802/jtnb.504 %G fr %F JTNB_2005__17_2_511_0
Cortella, Anne; Tignol, Jean-Pierre. Le théorème de Skolem-Noether pour les modules sur des anneaux principaux. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 511-516. doi : 10.5802/jtnb.504. http://www.numdam.org/articles/10.5802/jtnb.504/
[B1] R. Baer, Automorphism rings of primary abelian operator groups. Ann. Math. 44 (1943), 192–227. | MR | Zbl
[B2] R. Baer, Linear algebra and projective geometry. Academic Press (1952). | MR | Zbl
[F1] L. Fuchs, Infinite abelian groups, vol. 1. Academic Press (1970). | MR | Zbl
[F2] L. Fuchs, Infinite abelian groups, vol. 2. Academic Press (1973). | MR | Zbl
[G] R. Goebel, Endomorphism rings of abelian groups. Lecture notes in math. 1006 (1983), 340–353. | MR | Zbl
[I] I.M. Isaacs, Automorphisms of matrix algebras over commutative rings. Linear. Alg. Appli. 31 (1980), 215–231. | MR | Zbl
[K1] I. Kaplansky, Some results on abelian groups. Proc. Nat. Acad. Sci. USA 38 (1952), 538–540. | MR | Zbl
[K2] I. Kaplansky, Infinite abelian groups. Univ. Michigan Press (1954) ; rev. ed. 1969. | MR | Zbl
[Kn] M.-A. Knus, Algebres d’azumaya et modules projectifs. Commen. Math. Helv. 45 (1970), 372–383. | Zbl
[L1] T.Y. Lam, A first course in non-commutative rings. Springer-Verlag (1991). | MR | Zbl
[L2] T.Y. Lam, Modules with isomorphic multiples and rings with isomorphic matrix rings, a survey. Monographies de l’enseign. math., Genève 35 (1999). | Zbl
[L3] T.Y. Lam, Exercises in Classical Ring Theory. Springer-Verlag (1995). | MR | Zbl
[M] A.V. Mikhalev, Isomorphisms and anti-isomorphisms of endomorphism rings of modules. Proc. first international Tainan-Moscow alg. workshop, Berlin (1996). | MR | Zbl
[RZ] A. Rosenberg, D. Zelinsky, Automorphisms of separable algebras, Pacif. J. Math. 11 (1961), 1109–1117. | MR | Zbl
[Thz] J. Thevenaz, -algebras and modular representation theory. Oxford Sc. Publi. (1995). | MR | Zbl
[W] K.G. Wolfson, Anti-isomorphisms of endomorphism rings of locally free modules. Math. Z. 202 (1989), 1951–1959. | MR | Zbl
Cité par Sources :