Nous étudions un problème diophantien simultané relié à la conjecture de Littlewood. En utilisant des minorations connues de formes linéaires de logarithmes -adiques, nous montrons qu’un résultat que nous avons précédemment obtenu, concernant les nombres quadratiques, est presque optimal.
We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.
@article{JTNB_2005__17_1_207_0, author = {de Mathan, Bernard}, title = {On a mixed {Littlewood} conjecture for quadratic numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {207--215}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.487}, zbl = {1165.11325}, mrnumber = {2152221}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.487/} }
TY - JOUR AU - de Mathan, Bernard TI - On a mixed Littlewood conjecture for quadratic numbers JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 207 EP - 215 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.487/ DO - 10.5802/jtnb.487 LA - en ID - JTNB_2005__17_1_207_0 ER -
%0 Journal Article %A de Mathan, Bernard %T On a mixed Littlewood conjecture for quadratic numbers %J Journal de théorie des nombres de Bordeaux %D 2005 %P 207-215 %V 17 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.487/ %R 10.5802/jtnb.487 %G en %F JTNB_2005__17_1_207_0
de Mathan, Bernard. On a mixed Littlewood conjecture for quadratic numbers. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 207-215. doi : 10.5802/jtnb.487. http://www.numdam.org/articles/10.5802/jtnb.487/
[1] M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270. | MR | Zbl
[2] Y. Bugeaud, M. Laurent, Minoration effective de la distance -adique entre puissances de nombres algébriques. J. Number Theory 61 (1996), 311–342. | MR | Zbl
[3] B. de Mathan, Linear forms in logarithms and simultaneous Diophantine approximation. (To appear).
[4] B. de Mathan, Approximations diophantiennes dans un corps local. Bull. Soc. math. France, Mémoire 21 (1970). | Numdam | MR | Zbl
[5] B. de Mathan, O. Teulié, Problèmes diophantiens simultanés. Monatshefte Math. 143 (2004), 229–245. | MR | Zbl
[6] D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. | MR | Zbl
[7] L. G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197–201. | MR | Zbl
[8] K. Yu, -adic logarithmic forms and group varieties II. Acta Arith. 89 (1999), 337–378. | MR | Zbl
Cité par Sources :