The joint distribution of Q-additive functions on polynomials over finite fields
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 125-150.

Soient K un corps fini et QK[T] un polynôme de degré au moins égal à 1. Une fonction f sur K[T] est dite (complètement) Q-additive si f(A+BQ)=f(A)+f(B) pour tous A,BK[T] tels que deg(A)<deg(Q). Nous montrons que les vecteurs (f 1 (A),...,f d (A)) sont asymptotiquement équirépartis dans l’ensemble image {(f 1 (A),...,f d (A)):AK[T]} si les Q j sont premiers entre eux deux à deux et si les f j :K[T]K[T] sont Q j -additives. En outre, nous établissons que les vecteurs (g 1 (A),g 2 (A)) sont asymptotiquement indépendants et gaussiens si g 1 ,g 2 :K[T] sont Q 1 - resp. Q 2 -additives.

Let K be a finite field and QK[T] a polynomial of positive degree. A function f on K[T] is called (completely) Q-additive if f(A+BQ)=f(A)+f(B), where A,BK[T] and deg(A)<deg(Q). We prove that the values (f 1 (A),...,f d (A)) are asymptotically equidistributed on the (finite) image set {(f 1 (A),..., f d (A)):AK[T]} if Q j are pairwise coprime and f j :K[T]K[T] are Q j -additive. Furthermore, it is shown that (g 1 (A),g 2 (A)) are asymptotically independent and Gaussian if g 1 ,g 2 :K[T] are Q 1 - resp. Q 2 -additive.

DOI : 10.5802/jtnb.481
Drmota, Michael 1 ; Gutenbrunner, Georg 1

1 Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria
@article{JTNB_2005__17_1_125_0,
     author = {Drmota, Michael and Gutenbrunner, Georg},
     title = {The joint distribution of $Q$-additive functions on polynomials over finite fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {125--150},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.481},
     zbl = {1129.11040},
     mrnumber = {2152215},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.481/}
}
TY  - JOUR
AU  - Drmota, Michael
AU  - Gutenbrunner, Georg
TI  - The joint distribution of $Q$-additive functions on polynomials over finite fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 125
EP  - 150
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.481/
DO  - 10.5802/jtnb.481
LA  - en
ID  - JTNB_2005__17_1_125_0
ER  - 
%0 Journal Article
%A Drmota, Michael
%A Gutenbrunner, Georg
%T The joint distribution of $Q$-additive functions on polynomials over finite fields
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 125-150
%V 17
%N 1
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.481/
%R 10.5802/jtnb.481
%G en
%F JTNB_2005__17_1_125_0
Drmota, Michael; Gutenbrunner, Georg. The joint distribution of $Q$-additive functions on polynomials over finite fields. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 125-150. doi : 10.5802/jtnb.481. http://www.numdam.org/articles/10.5802/jtnb.481/

[1] N. L. Bassily, I. Kátai, Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353–361. | MR | Zbl

[2] Mireille Car, Sommes de puissances et d’irréductibles dans F q [X]. Acta Arith. 44 (1984), 7–34. | MR | Zbl

[3] J. Coquet, Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). | Numdam | MR | Zbl

[4] H. Delange Sur les fonctions q-additives ou q-multiplicatives. Acta Arith. 21 (1972), 285-298. | MR | Zbl

[5] H. Delange Sur la fonction sommatoire de la fonction ”Somme de Chiffres”. L’Enseignement math. 21 (1975), 31–77. | MR | Zbl

[6] M. Drmota, The joint distribution of q-additive functions. Acta Arith. 100 (2001), 17–39. | MR | Zbl

[7] M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Theor. Nombres Bordx. 10 (1998), 17–32. | Numdam | MR | Zbl

[8] J. M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions. J. Number Th. 62 (1997), 19–38. | MR | Zbl

[9] P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function. in: Applications of Fibonacci Numbers 5 (1993), 263–271 | MR | Zbl

[10] G.W. Effinger, D. R. Hayes, Additive number theory of polynomials over a finite field. Oxford University Press, New York, 1991. | MR | Zbl

[11] I. Kátai, Distribution of q-additive function. Probability theory and applications, Essays to the Mem. of J. Mogyorodi, Math. Appl. 80 (1992), Kluwer, Dortrecht, 309–318. | MR | Zbl

[12] R. E. Kennedy, C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums. Fibonacci Q. 29 (1991), 145–149. | MR | Zbl

[13] D.-H. Kim, On the joint distribution of q-additive functions in residue classes . J. Number Theory 74 (1999), 307 – 336. | MR | Zbl

[14] P. Kirschenhofer, On the variance of the sum of digits function. Lecture Notes Math. 1452 (1990), 112–116. | MR | Zbl

[15] E. Manstavičius, Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413–430. | MR | Zbl

[16] R. C. Mason, Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes 96, Cambridge University Press, 1984. | MR | Zbl

[17] W. Steiner, On the joint distribution of q-additive functions on polynomial sequences, Theory of Stochastic Processes 8 (24) (2002), 336–357. | MR | Zbl

Cité par Sources :