Soient un corps fini et un polynôme de degré au moins égal à 1. Une fonction sur est dite (complètement) -additive si pour tous tels que . Nous montrons que les vecteurs sont asymptotiquement équirépartis dans l’ensemble image si les sont premiers entre eux deux à deux et si les sont -additives. En outre, nous établissons que les vecteurs sont asymptotiquement indépendants et gaussiens si sont - resp. -additives.
Let be a finite field and a polynomial of positive degree. A function on is called (completely) -additive if , where and . We prove that the values are asymptotically equidistributed on the (finite) image set if are pairwise coprime and are -additive. Furthermore, it is shown that are asymptotically independent and Gaussian if are - resp. -additive.
@article{JTNB_2005__17_1_125_0, author = {Drmota, Michael and Gutenbrunner, Georg}, title = {The joint distribution of $Q$-additive functions on polynomials over finite fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--150}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.481}, zbl = {1129.11040}, mrnumber = {2152215}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.481/} }
TY - JOUR AU - Drmota, Michael AU - Gutenbrunner, Georg TI - The joint distribution of $Q$-additive functions on polynomials over finite fields JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 125 EP - 150 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.481/ DO - 10.5802/jtnb.481 LA - en ID - JTNB_2005__17_1_125_0 ER -
%0 Journal Article %A Drmota, Michael %A Gutenbrunner, Georg %T The joint distribution of $Q$-additive functions on polynomials over finite fields %J Journal de théorie des nombres de Bordeaux %D 2005 %P 125-150 %V 17 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.481/ %R 10.5802/jtnb.481 %G en %F JTNB_2005__17_1_125_0
Drmota, Michael; Gutenbrunner, Georg. The joint distribution of $Q$-additive functions on polynomials over finite fields. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 125-150. doi : 10.5802/jtnb.481. http://www.numdam.org/articles/10.5802/jtnb.481/
[1] N. L. Bassily, I. Kátai, Distribution of the values of -additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353–361. | MR | Zbl
[2] Mireille Car, Sommes de puissances et d’irréductibles dans . Acta Arith. 44 (1984), 7–34. | MR | Zbl
[3] J. Coquet, Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). | Numdam | MR | Zbl
[4] H. Delange Sur les fonctions -additives ou -multiplicatives. Acta Arith. 21 (1972), 285-298. | MR | Zbl
[5] H. Delange Sur la fonction sommatoire de la fonction ”Somme de Chiffres”. L’Enseignement math. 21 (1975), 31–77. | MR | Zbl
[6] M. Drmota, The joint distribution of -additive functions. Acta Arith. 100 (2001), 17–39. | MR | Zbl
[7] M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Theor. Nombres Bordx. 10 (1998), 17–32. | Numdam | MR | Zbl
[8] J. M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions. J. Number Th. 62 (1997), 19–38. | MR | Zbl
[9] P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function. in: Applications of Fibonacci Numbers 5 (1993), 263–271 | MR | Zbl
[10] G.W. Effinger, D. R. Hayes, Additive number theory of polynomials over a finite field. Oxford University Press, New York, 1991. | MR | Zbl
[11] I. Kátai, Distribution of -additive function. Probability theory and applications, Essays to the Mem. of J. Mogyorodi, Math. Appl. 80 (1992), Kluwer, Dortrecht, 309–318. | MR | Zbl
[12] R. E. Kennedy, C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums. Fibonacci Q. 29 (1991), 145–149. | MR | Zbl
[13] D.-H. Kim, On the joint distribution of q-additive functions in residue classes . J. Number Theory 74 (1999), 307 – 336. | MR | Zbl
[14] P. Kirschenhofer, On the variance of the sum of digits function. Lecture Notes Math. 1452 (1990), 112–116. | MR | Zbl
[15] E. Manstavičius, Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413–430. | MR | Zbl
[16] R. C. Mason, Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes 96, Cambridge University Press, 1984. | MR | Zbl
[17] W. Steiner, On the joint distribution of q-additive functions on polynomial sequences, Theory of Stochastic Processes 8 (24) (2002), 336–357. | MR | Zbl
Cité par Sources :