Critical and ramification points of the modular parametrization of an elliptic curve
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 109-124.

Soit E une courbe elliptique définie sur de conducteur N et soit ϕ son revêtement modulaire :

ϕ:X0(N)E().

Dans cet article, nous nous intéressons aux points critiques et aux points de ramification de ϕ. En particulier, nous expliquons comment donner une étude plus ou moins expérimentale de ces points.

Let E be an elliptic curve defined over with conductor N and denote by ϕ the modular parametrization:

ϕ:X0(N)E().

In this paper, we are concerned with the critical and ramification points of ϕ. In particular, we explain how we can obtain a more or less experimental study of these points.

DOI : 10.5802/jtnb.480
Delaunay, Christophe 1

1 Institut Camille Jordan Bâtiment Braconnier Université Claude Bernard Lyon 1 43, avenue du 11 novembre 1918 69622 Villeurbanne cedex, France
@article{JTNB_2005__17_1_109_0,
     author = {Delaunay, Christophe},
     title = {Critical and ramification points of the modular parametrization of an elliptic curve},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {109--124},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.480},
     zbl = {1082.11033},
     mrnumber = {2152214},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.480/}
}
TY  - JOUR
AU  - Delaunay, Christophe
TI  - Critical and ramification points of the modular parametrization of an elliptic curve
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 109
EP  - 124
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://www.numdam.org/articles/10.5802/jtnb.480/
DO  - 10.5802/jtnb.480
LA  - en
ID  - JTNB_2005__17_1_109_0
ER  - 
%0 Journal Article
%A Delaunay, Christophe
%T Critical and ramification points of the modular parametrization of an elliptic curve
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 109-124
%V 17
%N 1
%I Université Bordeaux 1
%U https://www.numdam.org/articles/10.5802/jtnb.480/
%R 10.5802/jtnb.480
%G en
%F JTNB_2005__17_1_109_0
Delaunay, Christophe. Critical and ramification points of the modular parametrization of an elliptic curve. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 109-124. doi : 10.5802/jtnb.480. https://www.numdam.org/articles/10.5802/jtnb.480/

[1] A.O.L. Atkin, J. Lehner, Hecke operators on Γ0(N). Math. Ann. 185 (1970), 134–160. | Zbl

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available at http://www.math.u-psud.fr/~belabas/pari/

[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). | MR | Zbl

[4] B. Birch, Heegner points of elliptic curves. Symp. Math. Inst. Alta. Math. 15 (1975), 441–445. | MR | Zbl

[5] H. Cohen, A course in computational algebraic number theory. Graduate Texts in Math. 138, Springer-Verlag, New-York, 4-th corrected printing (2000). | MR | Zbl

[6] J. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, (1997) second edition. | MR | Zbl

[7] J. Cremona, Elliptic curve data for conductors up to 25000. Available at http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html

[8] C. Delaunay, Computing modular degrees using L-functions. Journ. theo. nomb. Bord. 15 (3) (2003), 673–682. | Numdam | MR | Zbl

[9] B. Gross, Heegner points on X0(N). Modular Forms, ed. R. A. Ramkin, (1984), 87–105. | MR | Zbl

[10] B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320. | MR | Zbl

[11] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. | MR | Zbl

[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Math. Soc of Japan 11, Princeton university Press (1971). | MR | Zbl

[13] N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Inv. Math. 98 (1988), 113–146. | MR | Zbl

[14] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572. | MR | Zbl

[15] M. Watkins, Computing the modular degree. Exp. Math. 11 (4) (2002), 487–502. | MR | Zbl

[16] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no.3, 443–551. | MR | Zbl

[17] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 (3) (1985), 372–384. | MR | Zbl

  • Jeon, Daeyeol; Kim, Chang Heon; Schweizer, Andreas Bielliptic intermediate modular curves, Journal of Pure and Applied Algebra, Volume 224 (2020) no. 1, p. 272 | DOI:10.1016/j.jpaa.2019.05.007
  • NARITA, Hiro-aki; SUGIMOTO, Kousuke Modular Degrees of Elliptic Curves and Some Quotient of L-values, Tokyo Journal of Mathematics, Volume 43 (2020) no. 2 | DOI:10.3836/tjm/1502179331
  • Jeon, Daeyeol Weierstrass points on hyperelliptic modular curves, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 95 (2019) no. 7 | DOI:10.3792/pjaa.95.65
  • Bringmann, Kathrin; Kane, Ben; Löbrich, Steffen; Ono, Ken; Rolen, Larry On divisors of modular forms, Advances in Mathematics, Volume 329 (2018), p. 541 | DOI:10.1016/j.aim.2018.02.001
  • Im, Bo-Hae; Jeon, Daeyeol; Kim, Chang Heon Notes on Weierstrass Points of Modular Curves X0(N), Taiwanese Journal of Mathematics, Volume 20 (2016) no. 6 | DOI:10.11650/tjm.20.2016.6547

Cité par 5 documents. Sources : Crossref