Designs, groups and lattices
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 25-44.

La notion de designs dans les espaces Grassmanniens a été introduite par l’auteur et R. Coulangeon, G. Nebe dans [3]. Après avoir rappelé les premières propriétés de ces objets et les relations avec la théorie des réseaux, nous montrons que la famille des réseaux de Barnes-Wall contient des 6-designs grassmanniens. Nous discutons également des relations entre cette notion de designs et les designs associés à l’espace symétrique formé des espaces totalement isotropes d’un espace quadratique binaire, qui sont mises en évidence par une certaine construction utilisant le groupe de Clifford.

The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold 6-Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which is revealed in a certain construction involving the Clifford group.

DOI : 10.5802/jtnb.474
Bachoc, Christine 1

1 Université Bordeaux I 351, cours de la Libération 33405 Talence, France
@article{JTNB_2005__17_1_25_0,
     author = {Bachoc, Christine},
     title = {Designs, groups and lattices},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {25--44},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.474},
     zbl = {1074.05023},
     mrnumber = {2152208},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.474/}
}
TY  - JOUR
AU  - Bachoc, Christine
TI  - Designs, groups and lattices
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 25
EP  - 44
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.474/
DO  - 10.5802/jtnb.474
LA  - en
ID  - JTNB_2005__17_1_25_0
ER  - 
%0 Journal Article
%A Bachoc, Christine
%T Designs, groups and lattices
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 25-44
%V 17
%N 1
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.474/
%R 10.5802/jtnb.474
%G en
%F JTNB_2005__17_1_25_0
Bachoc, Christine. Designs, groups and lattices. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 25-44. doi : 10.5802/jtnb.474. http://www.numdam.org/articles/10.5802/jtnb.474/

[1] C. Bachoc, E. Bannai, R. Coulangeon, Codes and designs in Grassmannian spaces. Discrete Mathematics 277 (2004), 15–28. | MR | Zbl

[2] C. Bachoc, Linear programming bounds for codes in Grassmannian spaces. In preparation.

[3] C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmannian spaces and lattices. J. Algebraic Combinatorics 16 (2002), 5–19. | MR | Zbl

[4] C. Bachoc, G. Nebe, Siegel modular forms, Grassmannian designs, and unimodular lattices. Proceedings of the 19th Algebraic Combinatorics Symposium, Kumamoto (2002).

[5] C. Bachoc, B. Venkov, Modular forms, lattices and spherical designs. In “Réseaux euclidiens, designs sphériques et formes modulaires”, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001), 87–111. | MR | Zbl

[6] E. Bannai, T. Ito, Agebraic Combinatorics I, Association Schemes (1984). | MR | Zbl

[7] M. Broué, M. Enguehard, Une famille infinie de formes quadratiques entières et leurs groupes d’automorphismes. Ann. Scient. E.N.S., 4 e série, 6 (1973), 17–52. | Numdam | MR | Zbl

[8] B. Bolt, The Clifford collineation, transform and similarity groups III: generators and involutions. J. Australian Math. Soc, 2 (1961), 334–344. | MR | Zbl

[9] B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups I. J. Australian Math. Soc, 2 (1961), 60–79 | MR | Zbl

[10] B. Bolt, T.G. Room, G.E. Wall, On Clifford collineation, transform and similarity groups II. J. Australian Math. Soc, 2 (1961), 80–96 | MR | Zbl

[11] J. H. Conway, R. H. Hardin, E. Rains, P.W. Shor, N. J. A. Sloane, A group-theoretical framework for the construction of packings in Grassmannian spaces. J. Algebraic Comb. 9 (1999), 129–140. | MR | Zbl

[12] J. H. Conway, R. H. Hardin, N. J. A. Sloane, Packing Lines, Planes, etc., Packings in Grassmannian Spaces. Experimental Mathematics 5 (1996), 139–159. | MR | Zbl

[13] R. Coulangeon, Réseaux k-extrêmes. Proc. London Math. Soc. (3) 73 (1996), no. 3, 555–574. | MR | Zbl

[14] P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs. Geom. Dedicata 6 (1977), 363–388. | MR | Zbl

[15] P. Delsarte, V.I. Levenshtein, Association schemes and coding theory. IEEE Trans. Inf. Th. 44 (6) (1998), 2477–2504. | MR | Zbl

[16] R. Goodman, N. R. Wallach, Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, 1998. | MR | Zbl

[17] A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proc. London Math. Soc. (3) 29 (1974), 174–192. | MR | Zbl

[18] J. Martinet, Sur certains designs sphériques liés à des réseaux entiers. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). | MR | Zbl

[19] G. Nebe, W. Plesken, Finite rational matrix groups. Memoirs of the AMS, vol. 116, nb. 556 (1995). | MR | Zbl

[20] G. Nebe, E. Rains, N.J.A Sloane, The invariants of the Clifford groups. Designs, Codes, and Cryptography 24 (1) (2001), 99–122. | MR | Zbl

[21] G. Nebe, N.J.A Sloane, A catalogue of lattices. http://www.research.att.com/ ˜njas/lattices/index.html

[22] G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10. J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. | Numdam | MR | Zbl

[23] G. Nebe, B. Venkov, The strongly perfect lattices of dimension 12. In preparation. | Numdam

[24] B. Runge, On Siegel modular forms I. J. Reine Angew. Math. 436 (1993), 57–85. | MR | Zbl

[25] B. Runge, On Siegel modular forms II. Nagoya Math. J. 138 (1995), 179–197. | MR | Zbl

[26] B. Runge, Codes and Siegel modular forms. Discrete Math. 148 (1995), 175–205. | MR | Zbl

[27] D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups. Amer. J. Math. 102 (4) (1980), 625–662. | MR | Zbl

[28] D. Stanton, Orthogonal polynomials and Chevalley groups. In Special functions: Group theoretical aspects and applications R.A. Askey, T.H. Koornwinder, W. Schempp editors, Mathematics and its applications, D. Reidel Publishing Company, 1984. | MR | Zbl

[29] B. Venkov, Réseaux et designs sphériques. In “Réseaux euclidiens, designs sphériques et formes modulaires, J. Martinet, éd., L’Enseignement Mathématique, Monographie no 37, Genève (2001). | MR | Zbl

[30] H. Wei, Y. Wang, Suborbits of the transitive set of subspaces of type (m,0) under finite classical groups. Algebra Colloq. 3:1 (1996), 73–84. | MR | Zbl

Cité par Sources :