On démontre que, pour tout réel, il existe une infinité de avec et tel que
La démonstration est basée sur une version effective du théorème de Kronecker sur les approximations diophantiennes.
We prove that for any real there are infinitely many values of with and such that
The proof relies on an effective version of Kronecker’s approximation theorem.
@article{JTNB_2004__16_1_221_0, author = {Steuding, J\"orn}, title = {Extremal values of {Dirichlet} $L$-functions in the half-plane of absolute convergence}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {221--232}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.444}, zbl = {1069.11036}, mrnumber = {2145583}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.444/} }
TY - JOUR AU - Steuding, Jörn TI - Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 221 EP - 232 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.444/ DO - 10.5802/jtnb.444 LA - en ID - JTNB_2004__16_1_221_0 ER -
%0 Journal Article %A Steuding, Jörn %T Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence %J Journal de théorie des nombres de Bordeaux %D 2004 %P 221-232 %V 16 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.444/ %R 10.5802/jtnb.444 %G en %F JTNB_2004__16_1_221_0
Steuding, Jörn. Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 221-232. doi : 10.5802/jtnb.444. http://www.numdam.org/articles/10.5802/jtnb.444/
[1] H. Bohr, E. Landau, Über das Verhalten von und in der Nähe der Geraden . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1910), 303–330. | EuDML | JFM
[2] H. Bohr, E. Landau, Nachtrag zu unseren Abhandlungen aus den Jahren 1910 und 1923. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1924), 168–172. | EuDML | JFM
[3] H. Davenport, H. Heilbronn, On the zeros of certain Dirichlet series I, II. J. London Math. Soc. 11 (1936), 181–185, 307–312. | JFM | MR
[4] R. Garunkštis, On zeros of the Lerch zeta-function II. Probability Theory and Mathematical Statistics: Proceedings of the Seventh Vilnius Conf. (1998), B.Grigelionis et al. (Eds.), TEV/Vilnius, VSP/Utrecht, 1999, 267–276. | Zbl
[5] K. Ramachandra, On the frequency of Titchmarsh’s phenomenon for - VII. Ann. Acad. Sci. Fennicae 14 (1989), 27–40. | MR | Zbl
[6] G.J. Rieger, Effective simultaneous approximation of complex numbers by conjugate algebraic integers. Acta Arith. 63 (1993), 325–334. | EuDML | MR | Zbl
[7] E.C. Titchmarsh, The theory of functions. Oxford University Press, 1939 2nd ed. | JFM | MR
[8] E.C. Titchmarsh, The theory of the Riemann zeta-function. Oxford University Press, 1986 2nd ed. | MR | Zbl
[9] M. Waldschmidt, A lower bound for linear forms in logarithms. Acta Arith. 37 (1980), 257-283. | EuDML | MR | Zbl
[10] H. Weyl, Über ein Problem aus dem Gebiete der diophantischen Approximation. Göttinger Nachrichten (1914), 234-244.
Cité par Sources :