Cet article est constitué de trois parties. Dans la première on prouve un théorème général sur l’image d’un language sous une subsitution. Dans la seconde on applique ce théorème au cas spécial prenant pour le language des mots balancés et la troisième partie concerne les mots bi-infinis récurrents de croissance de complexité minimale (“minimal block growth”).
This paper consists of three parts. In the first part we prove a general theorem on the image of a language under a substitution, in the second we apply this to the special case when is the language of balanced words and in the third part we deal with recurrent Z-words of minimal block growth.
@article{JTNB_2004__16_1_151_0, author = {Heinis, Alex}, title = {Languages under substitutions and balanced words}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {151--172}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.438}, zbl = {02184636}, mrnumber = {2145577}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.438/} }
TY - JOUR AU - Heinis, Alex TI - Languages under substitutions and balanced words JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 151 EP - 172 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.438/ DO - 10.5802/jtnb.438 LA - en ID - JTNB_2004__16_1_151_0 ER -
Heinis, Alex. Languages under substitutions and balanced words. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 151-172. doi : 10.5802/jtnb.438. http://www.numdam.org/articles/10.5802/jtnb.438/
[Be/Po] J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words. Internat. J. Algebra Comput. 3 (1993), 394–355. | MR | Zbl
[Ca] J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. 4 (1997), 67–88. | MR | Zbl
[CH] E.M. Coven, G.A. Hedlund, Sequences With Minimal Block Growth. Math. Systems Th. 7 (1971), 138–153. | MR | Zbl
[FW] N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109–114. | MR | Zbl
[H] A. Heinis, Arithmetics and combinatorics of words of low complexity. Doctor’s Thesis Rijksuniversiteit Leiden (2001). Available on http://www.math.leidenuniv.nl/~tijdeman | Zbl
[L] M. Lothaire, Mots. Hermès Paris 1990. | MR | Zbl
[dL/Mi] A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words. Theoret. Comp. Sci. 136 (1994), 361–385. | MR | Zbl
[Mi] F. Mignosi, On the number of factors of Sturmian words. Theoret. Comp. Sci. 82 (1991), 71–84. | MR | Zbl
[Mi/S] F. Mignosi, P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Th. Nombres Bordeaux 5 (1993), 211–233. | Numdam | MR | Zbl
[MH] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940), 1–42. | MR | Zbl
[T] R. Tijdeman, Intertwinings of periodic sequences. Indag. Math. 9 (1998), 113–122. | MR | Zbl
Cité par Sources :