Si
Given a pair of elliptic curves
Révisé le :
Accepté le :
Publié le :
Mots-clés : Chow Group, Kummer surface, clean, pencil, cubic curve, zero-cycle
@article{JTNB_2020__32_3_923_0, author = {Love, Jonathan}, title = {Rational {Equivalences} on {Products} of {Elliptic} {Curves} in a {Family}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {923--938}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1148}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1148/} }
TY - JOUR AU - Love, Jonathan TI - Rational Equivalences on Products of Elliptic Curves in a Family JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 923 EP - 938 VL - 32 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1148/ DO - 10.5802/jtnb.1148 LA - en ID - JTNB_2020__32_3_923_0 ER -
%0 Journal Article %A Love, Jonathan %T Rational Equivalences on Products of Elliptic Curves in a Family %J Journal de théorie des nombres de Bordeaux %D 2020 %P 923-938 %V 32 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1148/ %R 10.5802/jtnb.1148 %G en %F JTNB_2020__32_3_923_0
Love, Jonathan. Rational Equivalences on Products of Elliptic Curves in a Family. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 923-938. doi : 10.5802/jtnb.1148. https://www.numdam.org/articles/10.5802/jtnb.1148/
[1] Higher regulators and values of
[2] Height pairing between algebraic cycles,
[3] Algebraic cycles and values of
[4] Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR | Zbl
[5] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[6] Root numbers and ranks in positive characteristic, Adv. Math., Volume 198 (2005) no. 2, pp. 684-731 | DOI | MR | Zbl
[7] The elliptic curve database for conductors to 130000, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 11-29 | DOI | MR | Zbl
[8] Classical algebraic geometry. A modern view, Cambridge University Press, 2012, xii+639 pages | DOI | MR | Zbl
[9] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiv+470 pages | DOI | MR | Zbl
[10] Computing Relations in Groups of Zero-cycles and Isogeny Graphs, Ph. D. Thesis, Stanford University (2021) (in preparation; working title)
[11] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl
[12] Rational equivalence of
[13] Zero Cycles on a Product of Elliptic Curves (2018) (private correspondence)
[14] On the rank of an elliptic surface, Invent. Math., Volume 133 (1998) no. 1, pp. 43-67 | DOI | MR | Zbl
[15] Elliptic surfaces, Algebraic geometry in East Asia (Seoul 2008) (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl
[16] On the Mordell–Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[17] Correspondence of elliptic curves and Mordell–Weil lattices of certain elliptic
[18] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211 | DOI | MR | Zbl
[19] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR | Zbl
[20] Rank distribution in a family of cubic twists, Ranks of elliptic curves and random matrix theory (London Mathematical Society Lecture Note Series), Volume 341, Cambridge University Press, 2007, pp. 237-246 | DOI | MR
[21] Numerical investigations related to the
- Torsion phenomena for zero-cycles on a product of curves over a number field, Research in Number Theory, Volume 10 (2024) no. 2 | DOI:10.1007/s40993-024-00519-4
Cité par 1 document. Sources : Crossref