Si et sont deux courbes elliptiques sur un corps , nous avons une application naturelle . Quand est un corps de nombres, une conjecture due à Bloch et Beilinson prédit que l’image de cette application est finie. Nous construisons une famille de courbes elliptiques à deux paramètres qui peut être utilisée pour produire des exemples de couples pour lesquels cette image est finie. La famille est définie pour garantir l’existence d’une courbe rationnelle passant par un point spécifié de la surface de Kummer de .
Given a pair of elliptic curves over a field , we have a natural map , and a conjecture due to Bloch and Beilinson predicts that the image of this map is finite when is a number field. We construct a -parameter family of elliptic curves that can be used to produce examples of pairs where this image is finite. The family is constructed to guarantee the existence of a rational curve passing through a specified point in the Kummer surface of .
Révisé le :
Accepté le :
Publié le :
Mots clés : Chow Group, Kummer surface, clean, pencil, cubic curve, zero-cycle
@article{JTNB_2020__32_3_923_0, author = {Love, Jonathan}, title = {Rational {Equivalences} on {Products} of {Elliptic} {Curves} in a {Family}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {923--938}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1148}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1148/} }
TY - JOUR AU - Love, Jonathan TI - Rational Equivalences on Products of Elliptic Curves in a Family JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 923 EP - 938 VL - 32 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1148/ DO - 10.5802/jtnb.1148 LA - en ID - JTNB_2020__32_3_923_0 ER -
%0 Journal Article %A Love, Jonathan %T Rational Equivalences on Products of Elliptic Curves in a Family %J Journal de théorie des nombres de Bordeaux %D 2020 %P 923-938 %V 32 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1148/ %R 10.5802/jtnb.1148 %G en %F JTNB_2020__32_3_923_0
Love, Jonathan. Rational Equivalences on Products of Elliptic Curves in a Family. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 923-938. doi : 10.5802/jtnb.1148. http://www.numdam.org/articles/10.5802/jtnb.1148/
[1] Higher regulators and values of -functions, Current problems in mathematics, Vol. 24 (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 1984, pp. 181-238 | MR
[2] Height pairing between algebraic cycles, -theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Mathematics), Volume 1289, Springer, 1987, pp. 1-25 | DOI | MR | Zbl
[3] Algebraic cycles and values of -functions, J. Reine Angew. Math., Volume 350 (1984), pp. 94-108 | DOI | MR | Zbl
[4] Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR | Zbl
[5] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[6] Root numbers and ranks in positive characteristic, Adv. Math., Volume 198 (2005) no. 2, pp. 684-731 | DOI | MR | Zbl
[7] The elliptic curve database for conductors to 130000, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 11-29 | DOI | MR | Zbl
[8] Classical algebraic geometry. A modern view, Cambridge University Press, 2012, xii+639 pages | DOI | MR | Zbl
[9] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiv+470 pages | DOI | MR | Zbl
[10] Computing Relations in Groups of Zero-cycles and Isogeny Graphs, Ph. D. Thesis, Stanford University (2021) (in preparation; working title)
[11] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl
[12] Rational equivalence of -cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1968), pp. 195-204 | DOI | MR
[13] Zero Cycles on a Product of Elliptic Curves (2018) (private correspondence)
[14] On the rank of an elliptic surface, Invent. Math., Volume 133 (1998) no. 1, pp. 43-67 | DOI | MR | Zbl
[15] Elliptic surfaces, Algebraic geometry in East Asia (Seoul 2008) (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl
[16] On the Mordell–Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990) no. 2, pp. 211-240 | MR | Zbl
[17] Correspondence of elliptic curves and Mordell–Weil lattices of certain elliptic ’s, Algebraic cycles and motives. Vol. 2 (London Mathematical Society Lecture Note Series), Volume 344, Cambridge University Press, 2007, pp. 319-339 | DOI | MR | Zbl
[18] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983), pp. 197-211 | DOI | MR | Zbl
[19] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR | Zbl
[20] Rank distribution in a family of cubic twists, Ranks of elliptic curves and random matrix theory (London Mathematical Society Lecture Note Series), Volume 341, Cambridge University Press, 2007, pp. 237-246 | DOI | MR
[21] Numerical investigations related to the -series of certain elliptic curves, J. Indian Math. Soc., New Ser., Volume 52 (1987), pp. 51-69 | MR | Zbl
Cité par Sources :