An improved bound on the least common multiple of polynomial sequences
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 891-899.

Cilleruelo a conjecturé que si f[x] de degré d2 est irréductible sur les rationnels, alors loglcm(f(1),...,f(N))(d-1)NlogN quand N. Il l’a prouvé dans le cas d=2. Très récemment, Maynard et Rudnick ont prouvé qu’il existe c d >0 tel que loglcm(f(1),...,f(N))c d NlogN, et ont montré qu’on peut prendre c d =d-1 d 2 . Nous donnons une preuve alternative de ce résultat avec la constante améliorée c d =1. De plus, nous prouvons la minoration logradlcm(f(1),...,f(N))2 dNlogN et proposons une conjecture plus forte affirmant que logradlcm(f(1),...,f(N))(d-1)NlogN quand N.

Cilleruelo conjectured that if f[x] of degree d2 is irreducible over the rationals, then loglcm(f(1),...,f(N))(d-1)NlogN as N. He proved it for the case d=2. Very recently, Maynard and Rudnick proved there exists c d >0 with loglcm(f(1),...,f(N))c d NlogN, and showed one can take c d =d-1 d 2 . We give an alternative proof of this result with the improved constant c d =1. We additionally prove the bound logradlcm(f(1),...,f(N))2 dNlogN and make the stronger conjecture that logradlcm(f(1),...,f(N))(d-1)NlogN as N.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1146
Classification : 11N32
Mots clés : Least common multiple, polynomial sequence
Sah, Ashwin 1

1 Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA
@article{JTNB_2020__32_3_891_0,
     author = {Sah, Ashwin},
     title = {An improved bound on the least common multiple of polynomial sequences},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {891--899},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {3},
     year = {2020},
     doi = {10.5802/jtnb.1146},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1146/}
}
TY  - JOUR
AU  - Sah, Ashwin
TI  - An improved bound on the least common multiple of polynomial sequences
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 891
EP  - 899
VL  - 32
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1146/
DO  - 10.5802/jtnb.1146
LA  - en
ID  - JTNB_2020__32_3_891_0
ER  - 
%0 Journal Article
%A Sah, Ashwin
%T An improved bound on the least common multiple of polynomial sequences
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 891-899
%V 32
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1146/
%R 10.5802/jtnb.1146
%G en
%F JTNB_2020__32_3_891_0
Sah, Ashwin. An improved bound on the least common multiple of polynomial sequences. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 891-899. doi : 10.5802/jtnb.1146. http://www.numdam.org/articles/10.5802/jtnb.1146/

[1] Candela, Pablo; Rué, Juanjo; Serra, Oriol Memorial to Javier Cilleruelo: a problem list, Integers, Volume 18 (2018), A28, 9 pages | MR | Zbl

[2] Cilleruelo, Javier The least common multiple of a quadratic sequence, Compos. Math., Volume 147 (2011) no. 4, pp. 1129-1150 | DOI | MR | Zbl

[3] Hong, Shaofang; Luo, Yuanyuan; Qian, Guoyou; Wang, Chunlin Uniform lower bound for the least common multiple of a polynomial sequence, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 21-22, pp. 781-785 | DOI | MR | Zbl

[4] Hong, Shaofang; Qian, Guoyou; Tan, Qianrong The least common multiple of a sequence of products of linear polynomials, Acta Math. Hung., Volume 135 (2012) no. 1-2, pp. 160-167 | DOI | MR | Zbl

[5] Maynard, James; Rudnick, Ze’ev A lower bound on the least common multiple of polynomial sequences (to appear in Riv. Mat. Univ. Parma)

[6] Nagel, Trygve Généralisation d’un théorème de Tchebycheff, Journ. de Math., Volume 8 (1921) no. 4, pp. 343-356 | Zbl

[7] Rudnick, Ze’ev; Zehavi, Sa’ar On Cilleruelo’s conjecture for the least common multiple of polynomial sequences (2019) (https://arxiv.org/abs/1902.01102)

Cité par Sources :