Nous étudions la répartition de
La preuve est basée sur la méthode du crible de Harman et utilise des analogues pour les corps de nombres d’idées classiques dues à Vinogradov. De plus, nous introduisons un lissage qui nous permet d’utiliser la formule sommatoire de Poisson.
We investigate the distribution of
The proof is based on Harman’s sieve method and employs number field analogues of classical ideas due to Vinogradov. Moreover, we introduce a smoothing which allows us to make conveniently use of the Poisson summation formula.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Distribution modulo one, Diophantine approximation, imaginary quadratic field, smoothed sum, Poisson summation
@article{JTNB_2020__32_3_719_0, author = {Baier, Stephan and Technau, Marc}, title = {On the distribution of $\alpha p$ modulo one in imaginary quadratic number fields with class number one}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {719--760}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1141}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1141/} }
TY - JOUR AU - Baier, Stephan AU - Technau, Marc TI - On the distribution of $\alpha p$ modulo one in imaginary quadratic number fields with class number one JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 719 EP - 760 VL - 32 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1141/ DO - 10.5802/jtnb.1141 LA - en ID - JTNB_2020__32_3_719_0 ER -
%0 Journal Article %A Baier, Stephan %A Technau, Marc %T On the distribution of $\alpha p$ modulo one in imaginary quadratic number fields with class number one %J Journal de théorie des nombres de Bordeaux %D 2020 %P 719-760 %V 32 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1141/ %R 10.5802/jtnb.1141 %G en %F JTNB_2020__32_3_719_0
Baier, Stephan; Technau, Marc. On the distribution of $\alpha p$ modulo one in imaginary quadratic number fields with class number one. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 719-760. doi : 10.5802/jtnb.1141. https://www.numdam.org/articles/10.5802/jtnb.1141/
[1] A note on Diophantine approximation with Gaussian primes (2016) (https://arxiv.org/abs/1609.08745)
[2] Linear forms in the logarithms of algebraic numbers, Mathematika, Volume 13 (1966), pp. 204-216 | DOI | MR | Zbl
[3] Einführung in die analytische Zahlentheorie, Springer, 1995 | Zbl
[4] Über Kettenbruchentwicklung und über die Approximation von komplexen Zahlen, Ph. D. Thesis, University of Vienna (1936)
[5] An introduction to the theory of numbers, Oxford University Press, 2008
[6] On the distribution of
[7] On the distribution of
[8] Prime-detecting sieves, London Mathematical Society Monographs, 33, Princeton University Press, 2007 | MR | Zbl
[9] Diophantine approximation with Gaussian primes (2019) (Preprint, to appear) | DOI
[10] The distribution of
[11] Diophantische Analysis und Modulfunktionen, Math. Z., Volume 56 (1952), pp. 227-253 | DOI | MR | Zbl
[12] On the distribution of
[13] On the distribution of
[14] On mean values of some arithmetic functions in number fields, Acta Math. Hung., Volume 132 (2011) no. 4, pp. 348-357 | MR | Zbl
[15] The distribution of
[16] A complete determination of the complex quadratic fields of class-number one, Mich. Math. J., Volume 14 (1967), pp. 1-27 | MR | Zbl
[17] On the ‘gap’ in a theorem of Heegner, J. Number Theory, Volume 1 (1969), pp. 16-27 | DOI | MR | Zbl
[18] Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, Princeton University Press, 1971 | Zbl
[19] On Beatty sets and some generalisations thereof, Ph. D. Thesis, University of Würzburg (2018) | Zbl
[20] On the distribution of
[21] The method of trigonometrical sums in the theory of numbers, Dover Publications, 2004 (Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport. Reprint of the 1954 translation.)
Cité par Sources :