Dans cet article, nous présentons une nouvelle preuve du théorème central limite de Selberg pour les fonctions
In this article, based on a method of Radziwiłł and Soundararajan, we present a new proof of Selberg’s central limit theorem for Dirichlet
Révisé le :
Accepté le :
Publié le :
Mots-clés : Dirichlet
@article{JTNB_2020__32_3_685_0, author = {Hsu, Po-Han and Wong, Peng-Jie}, title = {On {Selberg{\textquoteright}s} {Central} {Limit} {Theorem} for {Dirichlet} $L$-functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {685--710}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1139}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1139/} }
TY - JOUR AU - Hsu, Po-Han AU - Wong, Peng-Jie TI - On Selberg’s Central Limit Theorem for Dirichlet $L$-functions JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 685 EP - 710 VL - 32 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1139/ DO - 10.5802/jtnb.1139 LA - en ID - JTNB_2020__32_3_685_0 ER -
%0 Journal Article %A Hsu, Po-Han %A Wong, Peng-Jie %T On Selberg’s Central Limit Theorem for Dirichlet $L$-functions %J Journal de théorie des nombres de Bordeaux %D 2020 %P 685-710 %V 32 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1139/ %R 10.5802/jtnb.1139 %G en %F JTNB_2020__32_3_685_0
Hsu, Po-Han; Wong, Peng-Jie. On Selberg’s Central Limit Theorem for Dirichlet $L$-functions. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 685-710. doi : 10.5802/jtnb.1139. https://www.numdam.org/articles/10.5802/jtnb.1139/
[1] Probability and Measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1995 | Zbl
[2] Peak positions of strongly unimodal sequences, Trans. Am. Math. Soc., Volume 372 (2019) no. 10, p. 7087-7019 | DOI | MR | Zbl
[3] Multiplicative Number Theory, Graduate Texts in Mathematics, Springer, 2000 | MR | Zbl
[4] Modern Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1988 | Zbl
[5] The asymptotic expansion of a ratio of gamma functions, Pac. J. Math., Volume 1 (1951), pp. 133-142 | MR | Zbl
[6] A proof of the generalized second-limit theorem in the theory of probability, Trans. Am. Math. Soc., Volume 33 (1931), pp. 533-543 | DOI | MR | Zbl
[7] Special Functions and Their Applications, Dover Publications, 1972 | Zbl
[8] Lectures on Gaussian Processes, SpringerBriefs in Mathematics, Springer, 2012 | MR | Zbl
[9] Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007 | MR | Zbl
[10] Problems in Analytic Number Theory, Graduate Texts in Mathematics, 206, Springer, 2008 | MR | Zbl
[11] Large deviations in Selberg’s central limit theorem (2011) (https://arxiv.org/abs/1108.5092)
[12] Selberg’s central limit theorem for
[13] On an approximate functional equation for Dirichlet
[14] Contributions to the theory of the Riemann zeta-function, Arch. Math., Volume 48 (1946) no. 5, pp. 89-155 | MR | Zbl
[15] Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Universitá di Salerno, 1989, pp. 367-385
Cité par Sources :