Soient
Given a natural number
Révisé le :
Accepté le :
Publié le :
Mots-clés : upper density, automatic sets, Cobham’s theorem, formal languages
@article{JTNB_2020__32_2_585_0, author = {Bell, Jason P.}, title = {The upper density of an automatic set is rational}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {585--604}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1135}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1135/} }
TY - JOUR AU - Bell, Jason P. TI - The upper density of an automatic set is rational JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 585 EP - 604 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1135/ DO - 10.5802/jtnb.1135 LA - en ID - JTNB_2020__32_2_585_0 ER -
%0 Journal Article %A Bell, Jason P. %T The upper density of an automatic set is rational %J Journal de théorie des nombres de Bordeaux %D 2020 %P 585-604 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1135/ %R 10.5802/jtnb.1135 %G en %F JTNB_2020__32_2_585_0
Bell, Jason P. The upper density of an automatic set is rational. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 585-604. doi : 10.5802/jtnb.1135. https://www.numdam.org/articles/10.5802/jtnb.1135/
[1] Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003 | Zbl
[2] Logarithmic frequency in morphic sequences, J. Théor. Nombres Bordeaux, Volume 20 (2008) no. 2, pp. 227-241 | DOI | Numdam | MR | Zbl
[3] The algebraic theory of context-free languages, Computer programming and formal systems (Studies in Logic and the Foundations of Mathematics), North-Holland, 1963, pp. 118-161 | DOI | Zbl
[4] Uniform tag sequences, Math. Syst. Theory, Volume 6 (1972), pp. 164-192 | DOI | MR | Zbl
[5] On
[6] On the characteristic roots of matrices with nonnegative elements, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 15 (1951), pp. 361-383 | MR | Zbl
[7] A note on the density of inherently ambiguous context-free languages, Acta Inf., Volume 14 (1980) no. 3, pp. 295-298 | DOI | MR | Zbl
[8] Factoring polynomials with rational coefficients, Math. Ann., Volume 261 (1982) no. 4, pp. 515-534 | DOI | MR | Zbl
[9] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002 | MR | Zbl
[10] The critical exponent is computable for automatic sequences, Int. J. Found. Comput. Sci., Volume 23 (2012) no. 8, pp. 1611-1626 | DOI | MR | Zbl
Cité par Sources :