Dans [36], Thakur définit des analogues de la fonction zêta multiple sur les corps de fonctions, et , où est un corps de fonctions global. Les versions étoilées de ces fonctions ont été étudiées par Masri [28]. Nous prouvons des formules de réduction pour ces fonctions étoilées, nous définissons des analogues des polylogarithmes multiples et nous présentons quelques formules pour des valeurs zêta multiples.
In [36], Thakur defines function field analogs of the classical multiple zeta function, namely, and , where is a global function field. Star versions of these functions were further studied by Masri [28]. We prove reduction formulas for these star functions, extend the construction to function field analogs of multiple polylogarithms, and exhibit some formulas for multiple zeta values.
Accepté le :
Publié le :
Mots clés : Function field, multiple zeta function, multiple polylogarithms
@article{JTNB_2020__32_2_403_0, author = {Basak, Debmalya and Degr\'e-Pelletier, Nicolas and Lal{\'\i}n, Matilde N.}, title = {Multiple zeta functions and polylogarithms over global function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {403--438}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1128}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1128/} }
TY - JOUR AU - Basak, Debmalya AU - Degré-Pelletier, Nicolas AU - Lalín, Matilde N. TI - Multiple zeta functions and polylogarithms over global function fields JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 403 EP - 438 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1128/ DO - 10.5802/jtnb.1128 LA - en ID - JTNB_2020__32_2_403_0 ER -
%0 Journal Article %A Basak, Debmalya %A Degré-Pelletier, Nicolas %A Lalín, Matilde N. %T Multiple zeta functions and polylogarithms over global function fields %J Journal de théorie des nombres de Bordeaux %D 2020 %P 403-438 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1128/ %R 10.5802/jtnb.1128 %G en %F JTNB_2020__32_2_403_0
Basak, Debmalya; Degré-Pelletier, Nicolas; Lalín, Matilde N. Multiple zeta functions and polylogarithms over global function fields. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 403-438. doi : 10.5802/jtnb.1128. http://www.numdam.org/articles/10.5802/jtnb.1128/
[1] Multizeta values for , their period interpretation, and relations between them, Int. Math. Res. Not. (2009) no. 11, pp. 2038-2055 | MR | Zbl
[2] A generating function for sums of multiple zeta values and its applications, Proc. Am. Math. Soc., Volume 136 (2008) no. 2, pp. 387-395 | DOI | MR | Zbl
[3] On generating functions of multiple zeta values and generalized hypergeometric functions, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 139-155 | DOI | MR | Zbl
[4] Multiple zeta values and periods: from moduli spaces to Feynman integrals, Combinatorics and physics (Contemporary Mathematics), Volume 539, American Mathematical Society, 2011, pp. 27-52 | DOI | MR | Zbl
[5] On the decomposition of motivic multiple zeta values, Galois-Teichmüller theory and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 63, Mathematical Society of Japan, 2012, pp. 31-58 | DOI | MR | Zbl
[6] On finite Carlitz multiple polylogarithms, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 3, pp. 1049-1058 | DOI | MR | Zbl
[7] On multiple polylogarithms in characteristic : -adic vanishing versus -adic Eulerianness, Int. Math. Res. Not. (2019) no. 3, pp. 923-947 | DOI | MR | Zbl
[8] Sum relations of multiple zeta star values with even arguments, Mediterr. J. Math., Volume 14 (2017) no. 3, 110, 13 pages | DOI | MR | Zbl
[9] Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) (Mathematical Sciences Research Institute Publications), Volume 16, Springer, 1989, pp. 79-297 | DOI | MR | Zbl
[10] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Algebra Anal., Volume 2 (1990) no. 4, pp. 149-181 | MR
[11] Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol., Volume 20 (1775), pp. 140-186
[12] Multiple -motives and moduli spaces , Compos. Math., Volume 140 (2004) no. 1, pp. 1-14 | DOI | MR
[13] On -analogues of two-one formulas for multiple harmonic sums and multiple zeta star values, Monatsh. Math., Volume 176 (2015) no. 2, pp. 275-291 | DOI | MR | Zbl
[14] Multiple harmonic sums and multiple harmonic star sums are (nearly) never integers, Integers, Volume 17 (2017), A10, 12 pages | MR | Zbl
[15] On -analogs of some families of multiple harmonic sums and multiple zeta star value identities, Commun. Number Theory Phys., Volume 10 (2016) no. 4, pp. 805-832 | DOI | MR | Zbl
[16] Multiple harmonic series, Pac. J. Math., Volume 152 (1992) no. 2, pp. 275-290 | DOI | MR | Zbl
[17] The algebra of multiple harmonic series, J. Algebra, Volume 194 (1997) no. 2, pp. 477-495 | DOI | MR | Zbl
[18] Multiple zeta values vs. multiple zeta-star values, J. Algebra, Volume 332 (2011), pp. 187-208 | DOI | MR | Zbl
[19] On a kind of duality of multiple zeta-star values, Int. J. Number Theory, Volume 6 (2010) no. 8, pp. 1927-1932 | DOI | MR | Zbl
[20] The Bowman-Bradley theorem for multiple zeta-star values, J. Number Theory, Volume 132 (2012) no. 9, pp. 1984-2002 | DOI | MR | Zbl
[21] Vassiliev’s knot invariants, I. M. Gel’fand Seminar (Advances in Soviet Mathematics), Volume 16, American Mathematical Society, 1993, pp. 137-150 | DOI | MR | Zbl
[22] Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 Moshé Flato (1937–1998) | DOI | MR | Zbl
[23] Periods, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | MR | Zbl
[24] Stuffle product formulas of multiple zeta values, Taiwanese J. Math., Volume 22 (2018) no. 3, pp. 529-543 | DOI | MR | Zbl
[25] A family of multiple harmonic sum and multiple zeta star value identities, Mathematika, Volume 61 (2015) no. 1, pp. 63-71 | DOI | MR | Zbl
[26] Identity involving symmetric sums of regularized multiple zeta-star values, Mosc. J. Comb. Number Theory, Volume 8 (2019) no. 2, pp. 125-136 | DOI | MR | Zbl
[27] Iterated integrals of modular forms and noncommutative modular symbols, Algebraic geometry and number theory (Progress in Mathematics), Volume 253, Birkhäuser, 2006, pp. 565-597 | DOI | MR | Zbl
[28] Multiple zeta values over global function fields, Multiple Dirichlet series, automorphic forms, and analytic number theory (Proceedings of Symposia in Pure Mathematics), Volume 75, American Mathematical Society, 2006, pp. 157-175 | DOI | MR | Zbl
[29] On some explicit evaluations of multiple zeta-star values, J. Number Theory, Volume 128 (2008) no. 9, pp. 2538-2548 | DOI | MR | Zbl
[30] On the sum formula for the -analogue of non-strict multiple zeta values, Proc. Am. Math. Soc., Volume 135 (2007) no. 10, pp. 3029-3037 | DOI | MR | Zbl
[31] Cyclic sum of multiple zeta values, Acta Arith., Volume 123 (2006) no. 3, pp. 289-295 | DOI | MR | Zbl
[32] Zeta stars, Commun. Number Theory Phys., Volume 2 (2008) no. 2, pp. 325-347 | DOI | MR | Zbl
[33] Number theory in function fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | DOI | MR | Zbl
[34] Analytische Zahlentheorie in Körpern der Charakteristik , Math. Z., Volume 33 (1931) no. 1, pp. 1-32 | DOI | MR | Zbl
[35] On some multiple zeta-star values of one-two-three indices, Int. J. Number Theory, Volume 9 (2013) no. 5, pp. 1171-1184 | DOI | MR | Zbl
[36] Function field arithmetic, World Scientific, 2004, xvi+388 pages | DOI | MR | Zbl
[37] Relations between multizeta values for , Int. Math. Res. Not. (2009) no. 12, pp. 2318-2346 | DOI | MR
[38] Shuffle relations for function field multizeta values, Int. Math. Res. Not. (2010) no. 11, pp. 1973-1980 | DOI | MR
[39] Multizeta values for function fields: a survey, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 3, pp. 997-1023 | MR
[40] Identities for the multiple zeta (star) values, Results Math., Volume 73 (2018) no. 1, 3, 22 pages | DOI | MR
[41] Explicit evaluation of certain sums of multiple zeta-star values, Funct. Approximatio, Comment. Math., Volume 49 (2013) no. 2, pp. 283-289 | DOI | MR
[42] On the duality for multiple zeta-star values of height one, Kyushu J. Math., Volume 64 (2010) no. 1, pp. 145-152 | DOI | MR
[43] Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) (Progress in Mathematics), Volume 120, Birkhäuser, 1994, pp. 497-512 | MR
[44] Evaluation of the multiple zeta values , Ann. Math., Volume 175 (2012) no. 2, pp. 977-1000 | DOI | MR
[45] Identity families of multiple harmonic sums and multiple zeta star values, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1669-1694 | DOI | MR
Cité par Sources :