On montre de nouveaux résultats sur l’équation , On en déduit, comme corollaire, qu’il n’existe qu’un nombre fini de nombres impairs superparfaits ayant un nombre fixé de facteurs premiers distincts.
Some new results concerning the equation , are proved. As a corollary, there are only finitely many odd superperfect numbers with a fixed number of distinct prime factors.
Révisé le :
Accepté le :
Publié le :
Mots clés : Odd perfect numbers, multiperfect numbers, superperfect number; the sum of divisors, arithmetic functions, exponential diophantine equations.
@article{JTNB_2020__32_1_259_0, author = {Yamada, Tomohiro}, title = {On finiteness of odd superperfect numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {259--274}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1121}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1121/} }
TY - JOUR AU - Yamada, Tomohiro TI - On finiteness of odd superperfect numbers JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 259 EP - 274 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1121/ DO - 10.5802/jtnb.1121 LA - en ID - JTNB_2020__32_1_259_0 ER -
%0 Journal Article %A Yamada, Tomohiro %T On finiteness of odd superperfect numbers %J Journal de théorie des nombres de Bordeaux %D 2020 %P 259-274 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1121/ %R 10.5802/jtnb.1121 %G en %F JTNB_2020__32_1_259_0
Yamada, Tomohiro. On finiteness of odd superperfect numbers. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 259-274. doi : 10.5802/jtnb.1121. http://www.numdam.org/articles/10.5802/jtnb.1121/
[1] Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith., Volume 74 (1996) no. 3, pp. 273-292 | DOI | MR | Zbl
[2] An effective -adic analogue of a theorem of Thue. II: The greatest prime factor of a binary form, Acta Arith., Volume 16 (1969), pp. 399-412 | DOI | MR | Zbl
[3] Some new results on odd perfect numbers, Pac. J. Math., Volume 57 (1975), pp. 359-364 | DOI | MR | Zbl
[4] Finiteness of the odd perfect and primitive abundant numbers with distinct prime factors, American J., Volume 35 (1913), pp. 413-422 | MR | Zbl
[5] On equations in -units and the Thue-Mahler equation, Invent. Math., Volume 75 (1984), pp. 561-584 | DOI | MR | Zbl
[6] The number of solutions of the Thue–Mahler equation, J. Reine Angew. Math., Volume 482 (1997), pp. 121-149 | MR
[7] Improved estimate for a linear form of the logarithms of algebraic numbers, Mat. Sb., Volume 77 (1968), pp. 423-436 translation in Math. USSR, Sb. 6 (1968), p. 393-406
[8] Greatest prime factor of a polynomial, Mat. Zametki, Volume 13 (1973), pp. 515-522 translation in Math. Notes 13 (1973), p. 313-317 | MR | Zbl
[9] An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 64 (2000) no. 6, pp. 125-180 translation in Izv. Math. 64 (2000), no. 6, p. 127–169 | MR | Zbl
[10] An upper bound for odd perfect numbers, Integers, Volume 3 (2003), A14, 9 pages | MR | Zbl
[11] Odd perfect numbers, diophantine equation, and upper bounds, Math. Comput., Volume 84 (2015), pp. 2549-2567 | DOI | MR | Zbl
[12] On multiply perfect numbers with a special property, Pac. J. Math., Volume 57 (1975), pp. 511-517 | DOI | MR | Zbl
[13] Multiply perfect numbers, Mersenne primes and effective computability, Math. Ann., Volume 226 (1977), pp. 195-206 | DOI | MR | Zbl
[14] On two theorems of Gelfond and some of their applications, Acta Arith., Volume 13 (1967), pp. 177-236 | DOI | MR | Zbl
[15] Diophantine approximations and diophantine equations, Lecture Notes in Mathematics, 1467, Springer, 1991 | MR | Zbl
[16] Exponential diophantine equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press, 1986 | MR | Zbl
[17] Super perfect numbers, Elem. Math., Volume 24 (1969), pp. 16-17 | MR | Zbl
[18] There is no odd super perfect number of the form , Elem. Math., Volume 28 (1973), pp. 148-150 | MR | Zbl
[19] Problem 005:10, 2005 (Western Number Theory Problems, http://www.ma.utexas.edu/users/goddardb/WCNT11/problems2005.pdf)
[20] Unitary super perfect numbers, Math. Pannonica, Volume 19 (2008), pp. 37-47 | MR | Zbl
[21] Zur Theorie der Potenzreste, Monatsh. Math., Volume 3 (1892), pp. 265-284 | DOI | MR | Zbl
Cité par Sources :