Il est connu que les nombres de Bernoulli sont les moments d’une famille de polynômes orthogonaux. On obtient des énoncés semblables pour une autre suite de nombres rationnels, qui ont d’autres similarités avec les nombres de Bernoulli.
The classical sequence of Bernoulli numbers is known to be the sequence of moments of a family of orthogonal polynomials. The same statement is obtained for another sequence of rational numbers, which is similar in many ways to the Bernoulli numbers.
Révisé le :
Accepté le :
Publié le :
Mots clés : continued fraction, Bernoulli number, orthogonal polynomial
@article{JTNB_2020__32_1_205_0, author = {Chapoton, Fr\'ed\'eric}, title = {Ramanujan{\textendash}Bernoulli numbers as moments of {Racah} polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {205--215}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1118}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1118/} }
TY - JOUR AU - Chapoton, Frédéric TI - Ramanujan–Bernoulli numbers as moments of Racah polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 205 EP - 215 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1118/ DO - 10.5802/jtnb.1118 LA - en ID - JTNB_2020__32_1_205_0 ER -
%0 Journal Article %A Chapoton, Frédéric %T Ramanujan–Bernoulli numbers as moments of Racah polynomials %J Journal de théorie des nombres de Bordeaux %D 2020 %P 205-215 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1118/ %R 10.5802/jtnb.1118 %G en %F JTNB_2020__32_1_205_0
Chapoton, Frédéric. Ramanujan–Bernoulli numbers as moments of Racah polynomials. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 205-215. doi : 10.5802/jtnb.1118. http://www.numdam.org/articles/10.5802/jtnb.1118/
[1] Ramanujan’s notebooks. Part V, Springer, 1998, xiv+624 pages | DOI | MR | Zbl
[2] Sur la série harmonique., Nouv. Ann., Volume IV (1885), pp. 295-296 | Zbl
[3] A rooted-trees -series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI | MR | Zbl
[4] Sur une série en arbres à deux paramètres, Sémin. Lothar. Comb., Volume 70 (2013), B70a, 20 pages | MR | Zbl
[5] -Ehrhart polynomials of Gorenstein polytopes, Bernoulli umbra and related Dirichlet series, Mosc. J. Comb. Number Theory, Volume 5 (2015) no. 4, pp. 13-38 | MR | Zbl
[6] Nombres de -Bernoulli–Carlitz et fractions continues, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 2, pp. 347-368 | MR | Zbl
[7] A summation on Bernoulli numbers, J. Number Theory, Volume 111 (2005) no. 2, pp. 372-391 | DOI | MR | Zbl
[8] The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue (1994) (http://homepage.tudelft.nl/11r49/documents/as98.pdf) (Technical report)
[9] Ueber eine einfache Entstehungsweise der Bernoulli’schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der k. b. Akademie der Wissenschaften zu München, Volume 7 (1877), pp. 157-187 (http://publikationen.badw.de/de/003384831.pdf)
[10] Une théorie combinatoire des polynômes orthogonaux, Lecture Notes UQAM, 219 pages, 1984 (http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html)
[11] Ramanujan’s harmonic number expansion into negative powers of a triangular number, JIPAM, J. Inequal. Pure Appl. Math., Volume 9 (2008) no. 3, 89, 12 pages | MR | Zbl
Cité par Sources :