Modulo une hypothèse de semi-simplicité partielle, on démontre le conjecture de Tate pour la surface elliptique modulaire de niveau sur un corps premier de cardinalité et on montre que le rang du groupe de Mordell–Weil est nul dans ce cas. Pour c’est un résultat de Shioda. De plus, on démontre que l’hypothèse de semi-simplicité vaut en dehors d’un ensemble de nombres premiers de densité nulle.
Assuming partial semisimplicity of Frobenius, we show Tate’s conjecture for the reduction of the elliptic modular surface of level at a prime satisfying and show that the Mordell–Weil rank is zero in this case. This extends a result of Shioda to . Furthermore, we show that for every number field partial semisimplicity holds for the reductions of at a set of places of density 1.
Accepté le :
Publié le :
Mots clés : elliptic curves, modular forms, $p$-adic cohomology, zeta function
@article{JTNB_2020__32_1_193_0, author = {Lodh, R\'emi}, title = {On {Tate{\textquoteright}s} conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {193--204}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1117}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1117/} }
TY - JOUR AU - Lodh, Rémi TI - On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$ JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 193 EP - 204 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1117/ DO - 10.5802/jtnb.1117 LA - en ID - JTNB_2020__32_1_193_0 ER -
%0 Journal Article %A Lodh, Rémi %T On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$ %J Journal de théorie des nombres de Bordeaux %D 2020 %P 193-204 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1117/ %R 10.5802/jtnb.1117 %G en %F JTNB_2020__32_1_193_0
Lodh, Rémi. On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 193-204. doi : 10.5802/jtnb.1117. http://www.numdam.org/articles/10.5802/jtnb.1117/
[1] Dualité de Poincaré et formule de Künneth en cohomologie rigide, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 5, pp. 493-498 | DOI | MR | Zbl
[2] Finitude et pureté cohomologique en cohomologie rigide (avec un appendice par Aise Johan de Jong), Invent. Math., Volume 128 (1997), pp. 329-377 | DOI | Zbl
[3] Théorie des intersections et théorème de Riemann–Roch (SGA 6) (Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc, eds.), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl
[4] Construction des représentations -adiques semi-stables, Invent. Math., Volume 140 (2000), pp. 1-43 | DOI | Zbl
[5] Formes modulaires et représentations -adiques, Séminaire Bourbaki 1968/69 (Lecture Notes in Mathematics), Volume 179, Springer (1971) | DOI | Zbl
[6] Les schémas de modules de courbes elliptiques, Modular functions of one variable II (Lecture Notes in Mathematics), Volume 349, Springer (1973) | DOI | Zbl
[7] Hodge–Tate structures and modular forms, Math. Ann., Volume 278 (1987), pp. 133-149 | DOI | MR | Zbl
[8] Le corps des périodes -adiques, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 59-111 | Numdam | Zbl
[9] Représentations -adiques semi-stables, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 113-184 | Numdam | Zbl
[10] Le groupe de Brauer, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics (Amsterdam)), Volume 3, North-Holland (1968) | Zbl
[11] Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | DOI | Numdam | MR | Zbl
[12] The Picard scheme, Fundamental Algebraic Geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society (2005) | MR
[13] Introduction to Modular Forms (With two appendices, by D. B. Zagier and by W. Feit), Grundlehren der Mathematischen Wissenschaften, 222, Springer, 1976 | Zbl
[14] Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, 2, American Mathematical Society, 2006 | MR | Zbl
[15] On a conjecture of Artin and Tate, Ann. Math., Volume 102 (1975), pp. 517-533 | DOI | MR | Zbl
[16] Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable V (Lecture Notes in Mathematics), Volume 601, Springer (1977) | DOI | MR | Zbl
[17] Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI | MR | Zbl
[18] Elliptic Surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl
[19] Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 123-201 | DOI | Numdam | Zbl
[20] On elliptic modular surfaces, J. Math. Soc. Japan, Volume 24 (1972), pp. 20-59 | DOI | MR | Zbl
[21] Algebraic cycles on certain surfaces in characteristic , Manifolds–Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), University of Tokyo Press (1975), pp. 357-364 | Zbl
Cité par Sources :