Dans cet article, nous entreprenons une expérimentation numérique pour donner des arguments en faveur de la conjecture de -rationalité de Greenberg. Nous donnons une famille de corps biquadratiques -rationnels et trouvons de nouveaux exemples numériques de corps -rationnels multiquadratiques. Dans le cas des corps multiquadratiques et multicubiques, on montre que la conjecture de Greenberg est une conséquence de l’heuristique de Cohen–Lenstra–Martinet et d’une conjecture de Hofmann et Zhang sur le régulateur -adique. Nous apportons de nouveaux résultats numériques en faveur de ces conjectures. Nous comparons les outils algorithmiques existants et proposons certaines améliorations.
In this paper we make a series of numerical experiments to support Greenberg’s -rationality conjecture, we present a family of -rational biquadratic fields and we find new examples of -rational multiquadratic fields. In the case of multiquadratic and multicubic fields we show that the conjecture is a consequence of the Cohen–Lenstra–Martinet heuristic and of the conjecture of Hofmann and Zhang on the -adic regulator, and we bring new numerical data to support the extensions of these conjectures. We compare the known algorithmic tools and propose some improvements.
Révisé le :
Accepté le :
Publié le :
Mots clés : class number, Cohen–Lenstra heuristic, $p$-rational number fields, $p$-adic regulator
@article{JTNB_2020__32_1_159_0, author = {Barbulescu, Razvan and Ray, Jishnu}, title = {Numerical verification of the {Cohen{\textendash}Lenstra{\textendash}Martinet} heuristics and of {Greenberg{\textquoteright}s} $p$-rationality conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {159--177}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1115}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1115/} }
TY - JOUR AU - Barbulescu, Razvan AU - Ray, Jishnu TI - Numerical verification of the Cohen–Lenstra–Martinet heuristics and of Greenberg’s $p$-rationality conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 159 EP - 177 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1115/ DO - 10.5802/jtnb.1115 LA - en ID - JTNB_2020__32_1_159_0 ER -
%0 Journal Article %A Barbulescu, Razvan %A Ray, Jishnu %T Numerical verification of the Cohen–Lenstra–Martinet heuristics and of Greenberg’s $p$-rationality conjecture %J Journal de théorie des nombres de Bordeaux %D 2020 %P 159-177 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1115/ %R 10.5802/jtnb.1115 %G en %F JTNB_2020__32_1_159_0
Barbulescu, Razvan; Ray, Jishnu. Numerical verification of the Cohen–Lenstra–Martinet heuristics and of Greenberg’s $p$-rationality conjecture. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 159-177. doi : 10.5802/jtnb.1115. http://www.numdam.org/articles/10.5802/jtnb.1115/
[1] An Algorithm for Computing p-Class Groups of Abelian Number Fields, Algorithmic Number Theory – ANTS VII (Lecture Notes in Computer Science), Volume 4076 (2006) | DOI | MR | Zbl
[2] Electronic manuscript of computations of “Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s -rationality conjecture”, 2017 (available online at https://webusers.imj-prg.fr/~razvan.barbaud/pRational/pRational.html)
[3] Short generators without quantum computers: the case of multiquadratics, Advances in cryptology – EUROCRYPT 2017 (Lecture Notes in Computer Science), Volume 10210, Springer (2017), pp. 27-59 | DOI | MR | Zbl
[4] A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer, 2013 | Zbl
[5] Heuristics on class groups, Number theory (New York, 1982) (Lecture Notes in Mathematics), Volume 1052, Springer, 1984, pp. 26-36 | DOI | MR
[6] Class groups of number fields: numerical heuristics, Math. Comput., Volume 48 (1987) no. 177, pp. 123-137 | DOI | MR | Zbl
[7] An application of the -adic analytic class number formula, LMS J. Comput. Math., Volume 19 (2016) no. 1, pp. 217-228 | DOI | MR | Zbl
[8] Class Field Theory: from theory to practice, Springer monographs of mathematics, Springer, 2013 | Zbl
[9] Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q, J. Reine Angew. Math., Volume 277 (1975) no. 89, 116 pages | MR | Zbl
[10] Galois representations with open image, Ann. Math. Qué., Volume 40 (2016) no. 1, pp. 83-119 | DOI | MR | Zbl
[11] On the computation of class numbers of real abelian fields, Math. Comput., Volume 78 (2009) no. 265, pp. 555-573 | DOI | MR | Zbl
[12] Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory, Volume 6 (1974) no. 4, pp. 276-278 | DOI | MR | Zbl
[13] Valuations of -adic regulators of cyclic cubic fields, J. Number Theory, Volume 169 (2016), pp. 86-102 | DOI | MR | Zbl
[14] Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J., Volume 1 (1950), pp. 1-10 | DOI | MR | Zbl
[15] Class number computations of real abelian number fields, Math. Comput., Volume 39 (1982) no. 160, pp. 693-707 | DOI | MR | Zbl
[16] L-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field, Math. Comput., Volume 59 (1992) no. 199, pp. 213-230 | MR | Zbl
[17] Majorations explicites du résidu au point des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, Volume 50 (1998) no. 1, pp. 57-69 | DOI | Zbl
[18] Cohen-Lenstra heuristic and roots of unity, J. Number Theory, Volume 128 (2008) no. 10, pp. 2823-2835 | DOI | MR | Zbl
[19] Sur les -extensions des corps -rationnels, Ph. D. Thesis, Université Paris VII (France) (1988)
[20] Sur les -extensions des corps -rationnels, Math. Nachr., Volume 149 (1990), pp. 163-176 | DOI | MR | Zbl
[21] Sur l’arithmétique des corps de nombres -rationnels, Séminaire de Théorie des Nombres, Paris 1987–88 (Progress in Mathematics), Volume 81, Birkhäuser, 1990, pp. 155-200 | DOI | MR | Zbl
[22] Computing the torsion of the -ramified module of a number field, Math. Comput., Volume 84 (2015) no. 291, pp. 371-383 | DOI | MR | Zbl
[23] Discrete logarithms and local units, Philosophical Transactions of the Royal Society of London A: Math., Phys. and Eng. Sci., Volume 345 (1993) no. 1676, pp. 409-423 | MR | Zbl
[24] PARI/GP version 2.9.0, 2016 (available from http://pari.math.u-bordeaux.fr/)
[25] SageMath, the Sage Mathematics Software System (Version 7.5.1), 2016 (http://www.sagemath.org/)
[26] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | MR | Zbl
Cité par Sources :