On the p-adic Langlands correspondence for algebraic tori
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 133-158.

Nous étendons les résultats de R.P. Langlands sur les représentations des groupes algébriques abéliens connexes. Pour démontrer nos théorèmes, nous considérons les caractères à valeurs dans un groupe topologique abélien divisible quelconque. Cela nous permet de prouver le cas abélien du programme de Langlands p-adique.

We extend the results by R.P. Langlands on representations of (connected) abelian algebraic groups. This is done by considering characters into any divisible abelian topological group. With this we can then prove what is known as the abelian case of the p-adic Langlands program.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1114
Classification : 11R39
Mots clés : $p$-adic, Langlands, tori
Birkbeck, Christopher 1

1 Department of Mathematics University College London Gower street London, WC1E 6BT, UK
@article{JTNB_2020__32_1_133_0,
     author = {Birkbeck, Christopher},
     title = {On the $p$-adic {Langlands} correspondence for algebraic tori},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {133--158},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1114},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1114/}
}
TY  - JOUR
AU  - Birkbeck, Christopher
TI  - On the $p$-adic Langlands correspondence for algebraic tori
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 133
EP  - 158
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1114/
DO  - 10.5802/jtnb.1114
LA  - en
ID  - JTNB_2020__32_1_133_0
ER  - 
%0 Journal Article
%A Birkbeck, Christopher
%T On the $p$-adic Langlands correspondence for algebraic tori
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 133-158
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1114/
%R 10.5802/jtnb.1114
%G en
%F JTNB_2020__32_1_133_0
Birkbeck, Christopher. On the $p$-adic Langlands correspondence for algebraic tori. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 133-158. doi : 10.5802/jtnb.1114. http://www.numdam.org/articles/10.5802/jtnb.1114/

[1] Artin, Emil; Tate, John T. Class field theory, AMS Chelsea Publishing, 2009 | Zbl

[2] Breuil, Christophe The emerging p-adic Langlands programme, Proceedings of the international congress of mathematicians (ICM 2010). Vol. II: Invited lectures, World Scientific; Hindustan Book Agency (2010), pp. 203-230 | MR | Zbl

[3] Brown, Kenneth S. Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, 1982 | Zbl

[4] Langlands, Robert P. Representations of abelian algebraic groups, Pac. J. Math. (1997) no. Special Issue, pp. 231-250 (Olga Taussky-Todd: in memoriam) | DOI | MR | Zbl

[5] Milne, John S. Arithmetic duality theorems, BookSurge, 2006 | Zbl

[6] Neukirch, Jürgen Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999 (transl. by N. Schappacher) | Zbl

[7] Rotman, Joseph J. An Introduction to Homological Algebra, Universitext, Springer, 2009 | Zbl

[8] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, Springer, 1980 (transl. by M. J. Greenberg) | Zbl

[9] Tate, John T. Number theoretic background, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, Part 2, American Mathematical Society (1979), pp. 3-26 | DOI | Zbl

[10] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995 | Zbl

[11] Weiss, Edwin Cohomology of Groups, Pure and Applied Mathematics, 34, Academic Press Inc., 1969 | MR | Zbl

Cité par Sources :