Nous donnons une description explicite du comportement du signe (root number) dans la famille des tordues d’une courbe elliptique par les valeurs rationnelles d’un polynôme . En particulier, nous présentons un critère pour que la famille ait un signe constant sur . Ceci complète un travail de Rohrlich : nous donnons les détails du comportement du signe lorsque a mauvaise réduction sur et nous traitons les cas qui n’étaient pas considérés précédemment.
We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve by the rational values of a polynomial . In particular, we present a criterion for the family to have a constant root number over . This completes work by Rohrlich: we detail the behaviour of the root number when has bad reduction over and we treat the cases which were not considered previously.
Révisé le :
Accepté le :
Publié le :
Mots clés : elliptic curve, root number, twist
@article{JTNB_2020__32_1_73_0, author = {Desjardins, Julie}, title = {Root number of twists of an elliptic curve}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {73--101}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1112}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1112/} }
TY - JOUR AU - Desjardins, Julie TI - Root number of twists of an elliptic curve JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 73 EP - 101 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1112/ DO - 10.5802/jtnb.1112 LA - en ID - JTNB_2020__32_1_73_0 ER -
%0 Journal Article %A Desjardins, Julie %T Root number of twists of an elliptic curve %J Journal de théorie des nombres de Bordeaux %D 2020 %P 73-101 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1112/ %R 10.5802/jtnb.1112 %G en %F JTNB_2020__32_1_73_0
Desjardins, Julie. Root number of twists of an elliptic curve. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 73-101. doi : 10.5802/jtnb.1112. http://www.numdam.org/articles/10.5802/jtnb.1112/
[1] The parity of the rank of the Mordell–Weil group, Topology, Volume 5 (1966), pp. 295-299 | DOI | MR | Zbl
[2] Selmer’s conjecture and families of elliptic curves, Bull. Lond. Math. Soc., Volume 14 (1982) no. 4, pp. 345-348 | DOI | MR | Zbl
[3] Calculating root numbers of elliptic curves over , Manuscr. Math., Volume 82 (1994) no. 1, pp. 93-104 | DOI | MR | Zbl
[4] Densité des points rationnels sur les surfaces elliptiques et les surfaces de del Pezzo de degré 1, Ph. D. Thesis, Université Paris-Diderot - Paris VII (France) (2016) (http://www.theses.fr/2016USPCC229)
[5] On the density of rational points on rational elliptic surfaces, Acta Arith., Volume 189 (2019) no. 2, pp. 109-146 | DOI | MR | Zbl
[6] On the variation of the root number of the fibers of families of elliptic curves, J. Lond. Math. Soc., Volume 99 (2019) no. 2, pp. 295-331 | DOI | MR | Zbl
[7] Geometry of del Pezzo surfaces of the form (2019) (https://arxiv.org/abs/1911.02684)
[8] Elliptic curves with all quadratic twists of positive rank, Acta Arith., Volume 137 (2009) no. 2, pp. 193-197 | DOI | MR | Zbl
[9] Signes locaux des courbes elliptiques en 2 et 3, C. R. Math. Acad. Sci. Paris, Volume 326 (1998) no. 9, pp. 1047-1052 | DOI | MR | Zbl
[10] Rational points on elliptic surfaces of quadratic twist type (2018) (https://arxiv.org/abs/1806.07869)
[11] A formula for the root number of a family of elliptic curves, J. Number Theory, Volume 51 (1995) no. 2, pp. 288-305 | DOI | MR | Zbl
[12] Average root numbers for a nonconstant family of elliptic curves, Compos. Math., Volume 136 (2003) no. 1, pp. 1-23 | DOI | MR | Zbl
[13] Variation of the root number in families of elliptic curves, Compos. Math., Volume 87 (1993) no. 2, pp. 119-151 | Numdam | MR | Zbl
[14] Galois theory, elliptic curves, and root numbers, Compos. Math., Volume 100 (1996) no. 3, pp. 311-349 | Numdam | MR | Zbl
[15] Density of rational points on isotrivial rational elliptic surfaces, Algebra Number Theory, Volume 5 (2011) no. 5, pp. 659-690 | DOI | MR | Zbl
Cité par Sources :