Soient un corps local non-archimédien et son anneau des entiers. Soit une composante de Bernstein de la catégorie des représentations lisses de Soient un -type de Bushnell–Kutzko et le centre de Bernstein de la composante . Soit un facteur direct de . Nous commençons par calculer , où est le corps résiduel de en un idéal maximal , et appartient à un ensemble Zariski dense dans .
Ce résultat nous permet ensuite de déduire que l’anneau des endomorphismes est isomorphe à , si apparait avec multiplicité un dans .
Let be a local non-archimedean field and its ring of integers. Let be a Bernstein component of the category of smooth representations of , let be a Bushnell–Kutzko -type, and let be the centre of the Bernstein component . Let be a direct summand of . We will begin by computing , where is the residue field at maximal ideal of , and the maximal ideal belongs to a Zariski-dense set in .
This result will allow us to deduce that the endomorphism ring is isomorphic to , when appears with multiplicity one in .
Révisé le :
Accepté le :
Publié le :
Mots clés : smooth representations, $p$-adic groups, Bernstein centre
@article{JTNB_2020__32_1_49_0, author = {Pyvovarov, Alexandre}, title = {The endomorphism ring of projectives and the {Bernstein} centre}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {49--71}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1111}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1111/} }
TY - JOUR AU - Pyvovarov, Alexandre TI - The endomorphism ring of projectives and the Bernstein centre JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 49 EP - 71 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1111/ DO - 10.5802/jtnb.1111 LA - en ID - JTNB_2020__32_1_49_0 ER -
%0 Journal Article %A Pyvovarov, Alexandre %T The endomorphism ring of projectives and the Bernstein centre %J Journal de théorie des nombres de Bordeaux %D 2020 %P 49-71 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1111/ %R 10.5802/jtnb.1111 %G en %F JTNB_2020__32_1_49_0
Pyvovarov, Alexandre. The endomorphism ring of projectives and the Bernstein centre. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 49-71. doi : 10.5802/jtnb.1111. http://www.numdam.org/articles/10.5802/jtnb.1111/
[1] Algebraic -theory, Mathematics Lecture Note Series, W. A. Benjamin, 1968, xx+762 pages | MR | Zbl
[2] Le “centre” de Bernstein, Representations of reductive groups over a local field (Travaux en Cours), Hermann, 1984, pp. 1-32 | MR | Zbl
[3] Éléments de mathématique. Algèbre commutative. Chapitres 1 à 4, Masson, 1985, 362 pages | MR | Zbl
[4] Éléments de mathématique. Algèbre commutative. Chapitres 5 à 7, Masson, 1985, 351 pages | MR | Zbl
[5] Algebra II. Chapters 4–7, Elements of Mathematics, Springer, 2003, viii+461 pages (translated from the 1981 French edition by P. M. Cohn and J. Howie, Reprint of the 1990 English edition) | DOI | MR | Zbl
[6] Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples, Springer, 2012, x+489 pages (second revised edition of the 1958 edition) | DOI | MR | Zbl
[7] The admissible dual of via compact open subgroups, Annals of Mathematics Studies, 129, Princeton University Press, 1993, xii+313 pages | DOI | MR | Zbl
[8] Smooth representations of reductive -adic groups: structure theory via types, Proc. Lond. Math. Soc., Volume 77 (1998) no. 3, pp. 582-634 | DOI | MR | Zbl
[9] Semisimple types in , Compos. Math., Volume 119 (1999) no. 1, pp. 53-97 | DOI | MR | Zbl
[10] Patching and the -adic local Langlands correspondence, Camb. J. Math., Volume 4 (2016) no. 2, pp. 197-287 | DOI | MR | Zbl
[11] Caractères à valeurs dans le centre de Bernstein, J. Reine Angew. Math., Volume 508 (1999), pp. 61-83 | DOI | MR | Zbl
[12] Types et inductions pour les représentations modulaires des groupes -adiques, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 1, pp. 1-38 (with an appendix by Marie-France Vignéras) | DOI | Numdam | MR | Zbl
[13] The Bernstein center of the category of smooth -modules, Forum Math. Sigma, Volume 4 (2016), e11, 98 pages | DOI | MR | Zbl
[14] On the Iwahori-Matsumoto involution and applications, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 527-547 | DOI | Numdam | MR | Zbl
[15] On the Breuil-Schneider conjecture: Generic case (2018) (https://arxiv.org/abs/1803.01610)
[16] Représentations des groupes réductifs -adiques, Contributions in Mathematical and Computational Sciences, 17, Société Mathématique de France, 2010, vi+332 pages | MR | Zbl
[17] -types for the tempered components of a -adic general linear group, J. Reine Angew. Math., Volume 517 (1999), pp. 161-208 (with an appendix by Schneider and U. Stuhler) | DOI | MR | Zbl
[18] Projective modules over Laurent polynomial rings, Trans. Am. Math. Soc., Volume 237 (1978), pp. 111-120 | DOI | MR | Zbl
[19] Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. Éc. Norm. Supér., Volume 13 (1980) no. 2, pp. 165-210 | DOI | Numdam | MR | Zbl
Cité par Sources :