Reduction of certain crystalline representations and local constancy in the weight space
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 25-47.

Nous étudions la réduction mod p des représentations galoisiennes cristallines de dimension 2. Berger a montré que lorsque la trace de l’endomorphisme de Frobenius est fixée non nulle, la réduction, sous certaines conditions, est localement constante par rapport au poids. Ici, nous donnons une estimation du rayon de constance de la réduction autour de certains points spéciaux dans l’espace de poids en calculant une majoration pour la valuation p-adique du rayon. Notre borne supérieure se révèle être une fonction linéaire de la pente de la représentation cristalline considérée.

We study the mod p reduction of crystalline local Galois representations of dimension 2. Berger showed that for a fixed non-zero trace of the Frobenius, the reduction process is locally constant for varying weights under certain conditions. Here we give an estimate of the radius of this local constancy around some special points in the weight space by computing an upper bound for the exponent of p -1 in the radius. Our upper bound turns out to be a linear function of the slope of the crystalline representation under consideration.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1110
Classification : 11F80, 11F70, 13F20
Mots clés : Crystalline representations, mod $p$ reductions, local Langlands correspondence
Bhattacharya, Shalini 1

1 Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India-517507
@article{JTNB_2020__32_1_25_0,
     author = {Bhattacharya, Shalini},
     title = {Reduction of certain crystalline representations and local constancy in the weight space},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {25--47},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1110},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1110/}
}
TY  - JOUR
AU  - Bhattacharya, Shalini
TI  - Reduction of certain crystalline representations and local constancy in the weight space
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 25
EP  - 47
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1110/
DO  - 10.5802/jtnb.1110
LA  - en
ID  - JTNB_2020__32_1_25_0
ER  - 
%0 Journal Article
%A Bhattacharya, Shalini
%T Reduction of certain crystalline representations and local constancy in the weight space
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 25-47
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1110/
%R 10.5802/jtnb.1110
%G en
%F JTNB_2020__32_1_25_0
Bhattacharya, Shalini. Reduction of certain crystalline representations and local constancy in the weight space. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 25-47. doi : 10.5802/jtnb.1110. http://www.numdam.org/articles/10.5802/jtnb.1110/

[1] Arsovski, Bodan Reduction modulo p of two-dimensional crystalline representations of G p of slope less than three (2015) (https://arxiv.org/abs/1503.08309)

[2] Barthel, Laure; Livné, Ron Irreducible modular representations of GL 2 of a local field, Duke Math. J., Volume 75 (1994) no. 2, pp. 261-292 | DOI | MR | Zbl

[3] Barthel, Laure; Livné, Ron Modular representations of GL 2 of a local field: the ordinary, unramified case, J. Number Theory, Volume 55 (1995) no. 1, pp. 1-27 | DOI | MR | Zbl

[4] Berger, Laurent Errata for my articles (perso.ens-lyon.fr/laurent.berger/articles.php)

[5] Berger, Laurent Représentations modulaires de GL 2 ( p ) et représentations galoisiennes de dimension 2, Représentations p-adiques de groupes p-adiques II: Représentations de GL 2 ( p ) et (φ,Γ)-modules (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 263-279 | MR | Zbl

[6] Berger, Laurent Local constancy for the reduction mod p of 2-dimensional crystalline representations, Bull. Lond. Math. Soc., Volume 44 (2012) no. 3, pp. 451-459 | DOI | Zbl

[7] Berger, Laurent; Li, Hanfeng; Zhu, Hui June Construction of some families of 2-dimensional crystalline representations, Math. Ann., Volume 329 (2004) no. 2, pp. 365-377 | DOI | MR | Zbl

[8] Bhattacharya, Shalini; Ghate, Eknath Reductions of Galois representations for slopes in (1,2), Doc. Math., Volume 20 (2015), pp. 943-987 | MR | Zbl

[9] Bhattacharya, Shalini; Ghate, Eknath; Rozensztajn, Sandra Reductions of Galois representations of slope 1, J. Algebra, Volume 508 (2018), pp. 98-156 | DOI | MR | Zbl

[10] Breuil, Christophe Sur quelques représentations modulaires et p-adiques de GL 2 ( p ). II, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 23-58 | Zbl

[11] Breuil, Christophe Sur quelques représentations modulaires et p-adiques de GL 2 ( p )0. I, Compos. Math., Volume 138 (2003) no. 2, pp. 165-188 | DOI | Zbl

[12] Buzzard, Kevin; Gee, Toby Explicit reduction modulo p of certain two-dimensional crystalline representations, Int. Math. Res. Not., Volume 2009 (2009) no. 12, pp. 2303-2317 | MR | Zbl

[13] Buzzard, Kevin; Gee, Toby Explicit reduction modulo p of certain two-dimensional crystalline representations. II, Bull. Lond. Math. Soc., Volume 45 (2013) no. 4, pp. 779-788 | DOI | Zbl

[14] Colmez, Pierre; Fontaine, Jean-Marc Construction des représentations p-adiques semi-stables, Invent. Math., Volume 140 (2000) no. 1, pp. 1-43 | DOI | Zbl

[15] Edixhoven, Bas The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl

[16] Ganguli, Abhik; Ghate, Eknath Reductions of Galois representations via the mod p Local Langlands Correspondence, J. Number Theory, Volume 147 (2015), pp. 250-286 | DOI | MR | Zbl

[17] Ghate, Eknath A zigzag conjecture and local constancy for Galois representations (2019) (https://arxiv.org/abs/1903.08996v1)

[18] Ghate, Eknath; Rai, Vivek Reductions of Galois representations of slope 3/2 (2019) (https://arxiv.org/abs/1901.01728)

[19] Glover, D. J. A study of certain modular representations, J. Algebra, Volume 51 (1978), pp. 425-475 | DOI | MR | Zbl

[20] Kazandzidis, George S. Congruences on binomial coefficients, Bull. Soc. Math. Grèce, N. Ser., Volume 9 (1968) no. 1, pp. 1-12 | MR | Zbl

[21] Rozensztajn, Sandra An algorithm for computing the reduction of 2-dimensional crystalline representations of Gal( ¯ p | p ), Int. J. Number Theory, Volume 14 (2018) no. 7, pp. 1857-1894 | DOI | MR | Zbl

[22] Rozensztajn, Sandra On the locus of 2-dimensional crystalline representations with a given reduction modulo p, Algebra Number Theory, Volume 14 (2020) no. 3, pp. 655-720 | MR | Zbl

Cité par Sources :