Nous étudions la réduction mod des représentations galoisiennes cristallines de dimension 2. Berger a montré que lorsque la trace de l’endomorphisme de Frobenius est fixée non nulle, la réduction, sous certaines conditions, est localement constante par rapport au poids. Ici, nous donnons une estimation du rayon de constance de la réduction autour de certains points spéciaux dans l’espace de poids en calculant une majoration pour la valuation -adique du rayon. Notre borne supérieure se révèle être une fonction linéaire de la pente de la représentation cristalline considérée.
We study the mod reduction of crystalline local Galois representations of dimension 2. Berger showed that for a fixed non-zero trace of the Frobenius, the reduction process is locally constant for varying weights under certain conditions. Here we give an estimate of the radius of this local constancy around some special points in the weight space by computing an upper bound for the exponent of in the radius. Our upper bound turns out to be a linear function of the slope of the crystalline representation under consideration.
Révisé le :
Accepté le :
Publié le :
Mots clés : Crystalline representations, mod $p$ reductions, local Langlands correspondence
@article{JTNB_2020__32_1_25_0, author = {Bhattacharya, Shalini}, title = {Reduction of certain crystalline representations and local constancy in the weight space}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {25--47}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1110}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1110/} }
TY - JOUR AU - Bhattacharya, Shalini TI - Reduction of certain crystalline representations and local constancy in the weight space JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 25 EP - 47 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1110/ DO - 10.5802/jtnb.1110 LA - en ID - JTNB_2020__32_1_25_0 ER -
%0 Journal Article %A Bhattacharya, Shalini %T Reduction of certain crystalline representations and local constancy in the weight space %J Journal de théorie des nombres de Bordeaux %D 2020 %P 25-47 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1110/ %R 10.5802/jtnb.1110 %G en %F JTNB_2020__32_1_25_0
Bhattacharya, Shalini. Reduction of certain crystalline representations and local constancy in the weight space. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 25-47. doi : 10.5802/jtnb.1110. http://www.numdam.org/articles/10.5802/jtnb.1110/
[1] Reduction modulo of two-dimensional crystalline representations of of slope less than three (2015) (https://arxiv.org/abs/1503.08309)
[2] Irreducible modular representations of of a local field, Duke Math. J., Volume 75 (1994) no. 2, pp. 261-292 | DOI | MR | Zbl
[3] Modular representations of of a local field: the ordinary, unramified case, J. Number Theory, Volume 55 (1995) no. 1, pp. 1-27 | DOI | MR | Zbl
[4] Errata for my articles (perso.ens-lyon.fr/laurent.berger/articles.php)
[5] Représentations modulaires de et représentations galoisiennes de dimension 2, Représentations -adiques de groupes -adiques II: Représentations de et -modules (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 263-279 | MR | Zbl
[6] Local constancy for the reduction mod p of 2-dimensional crystalline representations, Bull. Lond. Math. Soc., Volume 44 (2012) no. 3, pp. 451-459 | DOI | Zbl
[7] Construction of some families of 2-dimensional crystalline representations, Math. Ann., Volume 329 (2004) no. 2, pp. 365-377 | DOI | MR | Zbl
[8] Reductions of Galois representations for slopes in , Doc. Math., Volume 20 (2015), pp. 943-987 | MR | Zbl
[9] Reductions of Galois representations of slope , J. Algebra, Volume 508 (2018), pp. 98-156 | DOI | MR | Zbl
[10] Sur quelques représentations modulaires et -adiques de . II, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 23-58 | Zbl
[11] Sur quelques représentations modulaires et -adiques de . I, Compos. Math., Volume 138 (2003) no. 2, pp. 165-188 | DOI | Zbl
[12] Explicit reduction modulo of certain two-dimensional crystalline representations, Int. Math. Res. Not., Volume 2009 (2009) no. 12, pp. 2303-2317 | MR | Zbl
[13] Explicit reduction modulo of certain two-dimensional crystalline representations. II, Bull. Lond. Math. Soc., Volume 45 (2013) no. 4, pp. 779-788 | DOI | Zbl
[14] Construction des représentations -adiques semi-stables, Invent. Math., Volume 140 (2000) no. 1, pp. 1-43 | DOI | Zbl
[15] The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl
[16] Reductions of Galois representations via the mod Local Langlands Correspondence, J. Number Theory, Volume 147 (2015), pp. 250-286 | DOI | MR | Zbl
[17] A zigzag conjecture and local constancy for Galois representations (2019) (https://arxiv.org/abs/1903.08996v1)
[18] Reductions of Galois representations of slope (2019) (https://arxiv.org/abs/1901.01728)
[19] A study of certain modular representations, J. Algebra, Volume 51 (1978), pp. 425-475 | DOI | MR | Zbl
[20] Congruences on binomial coefficients, Bull. Soc. Math. Grèce, N. Ser., Volume 9 (1968) no. 1, pp. 1-12 | MR | Zbl
[21] An algorithm for computing the reduction of 2-dimensional crystalline representations of , Int. J. Number Theory, Volume 14 (2018) no. 7, pp. 1857-1894 | DOI | MR | Zbl
[22] On the locus of -dimensional crystalline representations with a given reduction modulo , Algebra Number Theory, Volume 14 (2020) no. 3, pp. 655-720 | MR | Zbl
Cité par Sources :