-torsion in class groups of certain families of D 4 -quartic fields
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 1-23.

Nous donnons une borne supérieure pour la -torsion des groupes de classes pour presque tous les corps de certaines familles des corps quartiques de type D 4 . Nos outils principaux sont une nouvelle version du théorème de densité de Chebotarev pour ces familles et une borne inférieure sur le nombre de corps dans les familles.

We prove an upper bound for -torsion in class groups of almost all fields in certain families of D 4 -quartic fields. Our key tools are a new Chebotarev density theorem for these families of D 4 -quartic fields and a lower bound for the number of fields in the families.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1109
Classification : 11R29, 11R42, 11R45
Mots clés : torsion, class group, Chebotarev density theorem
An, Chen 1

1 Department of Mathematics, Duke University 120 Science Drive, Durham, NC 27708, USA
@article{JTNB_2020__32_1_1_0,
     author = {An, Chen},
     title = {$\ell $-torsion in class groups of certain families of $D_4$-quartic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1--23},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1109},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1109/}
}
TY  - JOUR
AU  - An, Chen
TI  - $\ell $-torsion in class groups of certain families of $D_4$-quartic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 1
EP  - 23
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1109/
DO  - 10.5802/jtnb.1109
LA  - en
ID  - JTNB_2020__32_1_1_0
ER  - 
%0 Journal Article
%A An, Chen
%T $\ell $-torsion in class groups of certain families of $D_4$-quartic fields
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 1-23
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1109/
%R 10.5802/jtnb.1109
%G en
%F JTNB_2020__32_1_1_0
An, Chen. $\ell $-torsion in class groups of certain families of $D_4$-quartic fields. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 1-23. doi : 10.5802/jtnb.1109. http://www.numdam.org/articles/10.5802/jtnb.1109/

[1] Brumley, Farrell; Thorner, Jesse; Zaman, Asif Zeros of Rankin-Selberg L-functions at the edge of the critical strip (2019) (https://arxiv.org/abs/1804.06402v3)

[2] Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel Enumerating Quartic Dihedral Extensions of , Compos. Math., Volume 133 (2002) no. 1, pp. 65-93 | DOI | MR | Zbl

[3] Ellenberg, Jordan S.; Pierce, Lillian B.; Matchett Wood, Melanie On -torsion in class groups of number fields, Algebra Number Theory, Volume 11 (2017) no. 8, pp. 1739-1778 | DOI | MR | Zbl

[4] Ellenberg, Jordan S.; Venkatesh, Akshay Reflection principles and bounds for class group torsion, Int. Math. Res. Not., Volume 2007 (2007) no. 1, rnm002, 18 pages | MR | Zbl

[5] Frei, Christopher; Widmer, Martin Average bounds for the -torsion in class groups of cyclic extensions, Res. Number Theory, Volume 4 (2018) no. 3, 34, 25 pages | MR | Zbl

[6] Frei, Christopher; Widmer, Martin Averages and higher moments for the -torsion in class groups (2018) (https://arxiv.org/abs/1810.04732)

[7] Heath-Brown, David R.; Pierce, Lillian B. Averages and moments associated to class numbers of imaginary quadratic fields, Compos. Math., Volume 153 (2017) no. 11, pp. 2287-2309 | DOI | MR | Zbl

[8] Huard, James G.; Spearman, Blair K.; Williams, Kenneth S. Integral bases for quartic fields with quadratic subfields, J. Number Theory, Volume 51 (1991) no. 1, pp. 87-102 | DOI | MR | Zbl

[9] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl

[10] Kowalski, Emmanuel; Michel, Philippe Zeros of families of automorphic L-functions close to 1, Pac. J. Math., Volume 207 (2002) no. 2, pp. 411-431 | DOI | MR | Zbl

[11] Lagarias, Jeffrey C.; Odlyzko, Andrew M. Effective versions of the Chebotarev density theorem, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1975 | Zbl

[12] Langlands, Robert P. Base change for GL(2), Annals of Mathematics Studies, 96, Princeton University Press, 1980 | MR | Zbl

[13] Martin, Kimball A symplectic case of Artin’s conjecture (2003) (https://arxiv.org/abs/math/0301093) | MR | Zbl

[14] Pierce, Lillian B.; L, Caroline; Turnage-Butterbaugh; Wood, Melanie Matchett On a conjecture for -torsion in class groups of number fields: from the perspective of moments (2019) (https://arxiv.org/abs/1902.02008v2)

[15] Pierce, Lillian B.; Turnage-Butterbaugh, Caroline L.; Wood, Melanie Matchett An effective Chebotarev density theorem for families of number fields, with an application to -torsion in class groups, Invent. Math., Volume 219 (2020) no. 2, pp. 701-778 | DOI | MR | Zbl

[16] Thorner, Jesse; Zaman, Asif A zero density estimate for Dedekind zeta functions (2019) (https://arxiv.org/abs/1909.01338)

[17] Widmer, Martin Bounds for the -torsion in class groups, Bull. Lond. Math. Soc., Volume 50 (2018) no. 1, pp. 124-131 | DOI | MR | Zbl

Cité par Sources :