Nous étudions les déformations des représentations lisses modulo (et leurs duaux) d’un groupe réductif -adique . Sous une hypothèse de généricité faible, nous prouvons que le foncteur d’induction parabolique relatif à un sous-groupe parabolique induit un isomorphisme entre l’anneau de déformation universel d’une représentation supersingulière de et de son induite parabolique . En conséquence, nous montrons que tout relèvement continu de est induit à partir d’un unique relèvement continu de .
We study deformations of smooth mod representations (and their duals) of a -adic reductive group . Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup defines an isomorphism between the universal deformation rings of a supersingular representation of and of its parabolic induction . As a consequence, we show that every Banach lift of is induced from a unique Banach lift of .
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1046
Mots clés : $p$-adic reductive groups, smooth representations, $\protect \mathfrak{m}$-adically continuous representations, parabolic induction, deformations
@article{JTNB_2018__30_2_695_0, author = {Hauseux, Julien and Schmidt, Tobias and Sorensen, Claus}, title = {Deformation rings and parabolic induction}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {695--727}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1046}, mrnumber = {3891334}, zbl = {1423.22019}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1046/} }
TY - JOUR AU - Hauseux, Julien AU - Schmidt, Tobias AU - Sorensen, Claus TI - Deformation rings and parabolic induction JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 695 EP - 727 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1046/ DO - 10.5802/jtnb.1046 LA - en ID - JTNB_2018__30_2_695_0 ER -
%0 Journal Article %A Hauseux, Julien %A Schmidt, Tobias %A Sorensen, Claus %T Deformation rings and parabolic induction %J Journal de théorie des nombres de Bordeaux %D 2018 %P 695-727 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1046/ %R 10.5802/jtnb.1046 %G en %F JTNB_2018__30_2_695_0
Hauseux, Julien; Schmidt, Tobias; Sorensen, Claus. Deformation rings and parabolic induction. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 695-727. doi : 10.5802/jtnb.1046. http://www.numdam.org/articles/10.5802/jtnb.1046/
[1] On a classification of irreducible admissible modulo representations of a -adic split reductive group, Compos. Math., Volume 149 (2013) no. 12, pp. 2139-2168 | MR | Zbl
[2] A classification of irreducible admissible mod representations of -adic reductive groups, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 495-559 | MR | Zbl
[3] Modulo representations of reductive -adic groups: functorial properties (2017) (https://arxiv.org/abs/1703.05599v2)
[4] Irreducible modular representations of of a local field, Duke Math. J., Volume 75 (1994) no. 2, pp. 261-292 | MR | Zbl
[5] Induced representations of reductive -adic groups. I, Ann. Sci. Éc. Norm. Supér., Volume 10 (1977), pp. 441-472 | DOI | Numdam | MR | Zbl
[6] The emerging p-adic Langlands programme, Proceedings of the International Congress of Mathematicians, Volume II, World Scientific; Hindustan Book Agency, 2010, pp. 203-230 | Zbl
[7] Représentations de and -modules, Représentations -adiques de groupes -adiques II: Représentations de et -modules (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 281-509 | Zbl
[8] Local-global compatibility in the -adic Langlands programme for (Draft dated March 23, 2011)
[9] Ordinary parts of admissible representations of -adic reductive groups I. Definition and first properties, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 355-402 | Numdam | MR | Zbl
[10] Ordinary parts of admissible representations of -adic reductive groups II. Derived functors, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 403-459 | Numdam | MR | Zbl
[11] Extensions entre séries principales -adiques et modulo de , J. Inst. Math. Jussieu, Volume 15 (2016), pp. 225-270 | DOI | MR | Zbl
[12] On the exactness of ordinary parts over a local field of characteristic , Pac. J. Math., Volume 295 (2018) no. 1, pp. 17-30 | DOI | MR | Zbl
[13] Parabolic induction and extensions, Algebra Number Theory, Volume 12 (2018) no. 4, pp. 779-831 | DOI | MR | Zbl
[14] Functorial properties of generalised Steinberg representations, J. Number Theory, Volume 195 (2019), pp. 312-329 | DOI | MR | Zbl
[15] The classification of irreducible admissible mod representations of a -adic , Invent. Math., Volume 186 (2011) no. 2, pp. 373-434 | DOI | MR | Zbl
[16] Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006, x+497 pages | MR | Zbl
[17] Deformations of and representations, Représentations -adiques de groupes -adiques II: Représentations de et -modules (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 511-528 | Zbl
[18] Extensions for supersingular representations of , Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 317-353 | Zbl
[19] The image of Colmez’s Montreal functor, Publ. Math., Inst. Hautes Étud. Sci., Volume 118 (2013), pp. 1-191 | DOI | MR | Zbl
[20] A perfect duality between -adic Banach spaces and compactoids, Indag. Math., New Ser., Volume 6 (1995) no. 3, pp. 325-339 | DOI | MR | Zbl
[21] On unitary deformations of smooth modular representations, Isr. J. Math., Volume 193 (2013), pp. 15-46 | DOI | MR | Zbl
[22] -adic Lie Groups, Grundlehren der Mathematischen Wissenschaften, 344, Springer, 2011, xi+254 pages | MR | Zbl
[23] Profinite groups, Arithmetic, and Geometry, Annals of Mathematics Studies, 67, Princeton University Press, 1972, x+252 pages | MR | Zbl
[24] Deformations of principal series modulo for (2015) (unpublished)
[25] Reductive groups over local fields, Automorphic Forms, Representations, and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 29-69 | DOI | Zbl
[26] The right adjoint of the parabolic induction, Arbeitstagung Bonn 2013: In Memory of Friedrich Hirzebruch (Progress in Mathematics), Volume 319, Birkhäuser, 2016, pp. 405-425 | DOI | MR | Zbl
[27] Profinite Groups, London Mathematical Society Monographs. New Series, 19, Clarendon Press, 1998, ix+284 pages | MR | Zbl
[28] On Flatness and Completion for Infinitely Generated Modules over Noetherian Rings, Commun. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI | MR | Zbl
Cité par Sources :