Nous montrons des formules asymptotiques dans des intervalles courts pour le nombre moyen de représentations des entiers de la forme et , où sont des entiers fixés, sont des nombres premiers et est un entier.
We prove results about the asymptotic formulae in short intervals for the average number of representations of integers of the forms and , where are fixed integers, are prime numbers and is an integer.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1041
Mots clés : Waring-Goldbach problem, Hardy–Littlewood method
@article{JTNB_2018__30_2_609_0, author = {Languasco, Alessandro and Zaccagnini, Alessandro}, title = {Short intervals asymptotic formulae for binary problems with prime powers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {609--635}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1041}, mrnumber = {3891329}, zbl = {1441.11261}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1041/} }
TY - JOUR AU - Languasco, Alessandro AU - Zaccagnini, Alessandro TI - Short intervals asymptotic formulae for binary problems with prime powers JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 609 EP - 635 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1041/ DO - 10.5802/jtnb.1041 LA - en ID - JTNB_2018__30_2_609_0 ER -
%0 Journal Article %A Languasco, Alessandro %A Zaccagnini, Alessandro %T Short intervals asymptotic formulae for binary problems with prime powers %J Journal de théorie des nombres de Bordeaux %D 2018 %P 609-635 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1041/ %R 10.5802/jtnb.1041 %G en %F JTNB_2018__30_2_609_0
Languasco, Alessandro; Zaccagnini, Alessandro. Short intervals asymptotic formulae for binary problems with prime powers. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 609-635. doi : 10.5802/jtnb.1041. http://www.numdam.org/articles/10.5802/jtnb.1041/
[1] Complex analysis, Universitext, Springer, 2009, x+532 pages | Zbl
[2] On the Hardy–Littlewood problem in short intervals, Int. J. Number Theory, Volume 4 (2008) no. 5, pp. 715-723 | DOI | MR | Zbl
[3] On the Hardy-Littlewood problem in short intervals, Int. J. Number Theory, Volume 4 (2008) no. 5, pp. 715-723 | DOI | MR | Zbl
[4] On a ternary Diophantine problem with mixed powers of primes, Acta Arith., Volume 159 (2013) no. 4, pp. 345-362 | DOI | MR | Zbl
[5] Short intervals asymptotic formulae for binary problems with primes and powers, II: density , Monatsh. Math., Volume 181 (2016) no. 2, pp. 419-435 | DOI | MR | Zbl
[6] Sum of one prime and two squares of primes in short intervals, J. Number Theory, Volume 159 (2016), pp. 45-58 | DOI | MR | Zbl
[7] Short intervals asymptotic formulae for binary problems with primes and powers, I: density , Ramanujan J., Volume 42 (2017), pp. 371-383 | DOI | MR | Zbl
[8] Sums of one prime power and two squares of primes in short intervals (2018) (https://arxiv.org/abs/1806.04934)
[9] Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994, xii+220 pages | MR | Zbl
[10] Hilbert’s inequality, J. Lond. Math. Soc., Volume 8 (1974), pp. 73-82 | DOI | MR | Zbl
[11] A note on the sum of a prime and a prime square, Analytic and probabilistic methods in number theory. Proceedings of the 6th international conference (Palanga, 2016), TEV, 2017, pp. 221-226 | MR | Zbl
[12] On the sum of prime number and square number (2017) (http://www.math.sci.hokudai.ac.jp/ wakate/mcyr/2017/pdf/01500_suzuki_yuta.pdf)
[13] The Hardy–Littlewood method, Cambridge Tracts in Mathematics, 125, Cambridge University Press, 1997, vii+232 pages | MR | Zbl
Cité par Sources :