Nous développons la théorie des idéaux de Hodge pour les -diviseurs à l’aide de log résolutions, généralisant notre précédent travail sur les hypersurfaces réduites. Nous obtenons des critères de (non) trivialité locale et un théorème d’annulation global, ainsi que d’autres analogues de résultats standard de la théorie des idéaux multiplicateurs, et nous en déduisons un nouveau théorème d’annulation local. Nous analysons la relation avec la -filtration dans un autre article.
We develop the theory of Hodge ideals for -divisors by means of log resolutions, extending our previous work on reduced hypersurfaces. We prove local (non-)triviality criteria and a global vanishing theorem, as well as other analogues of standard results from the theory of multiplier ideals, and we derive a new local vanishing theorem. The connection with the -filtration is analyzed in a sequel.
Accepté le :
Publié le :
DOI : 10.5802/jep.94
Keywords: Hodge ideals, D-modules, Hodge filtration, vanishing theorems, minimal exponent
Mot clés : Idéaux de Hodge, D-modules, filtration de Hodge, théorèmes d’annulation, exposant minimal
@article{JEP_2019__6__283_0, author = {Musta\c{t}ǎ, Mircea and Popa, Mihnea}, title = {Hodge ideals for ${\protect \bf Q}$-divisors: birational approach}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {283--328}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.94}, zbl = {07070281}, mrnumber = {3959075}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.94/} }
TY - JOUR AU - Mustaţǎ, Mircea AU - Popa, Mihnea TI - Hodge ideals for ${\protect \bf Q}$-divisors: birational approach JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 283 EP - 328 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.94/ DO - 10.5802/jep.94 LA - en ID - JEP_2019__6__283_0 ER -
%0 Journal Article %A Mustaţǎ, Mircea %A Popa, Mihnea %T Hodge ideals for ${\protect \bf Q}$-divisors: birational approach %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 283-328 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.94/ %R 10.5802/jep.94 %G en %F JEP_2019__6__283_0
Mustaţǎ, Mircea; Popa, Mihnea. Hodge ideals for ${\protect \bf Q}$-divisors: birational approach. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 283-328. doi : 10.5802/jep.94. http://www.numdam.org/articles/10.5802/jep.94/
[Bjö93] Analytic -modules and applications, Mathematics and its Applications, Kluwer Academic Publisher, Dordrecht, 1993 | MR
[Dim04] Sheaves in topology, Universitext, Springer-Verlag, Berlin, New York, 2004 | DOI | Zbl
[DMST06] Multiplier ideals, -filtrations and transversal sections, Math. Ann., Volume 336 (2006) no. 4, pp. 901-924 | DOI | MR | Zbl
[Dut18] Vanishing for Hodge ideals on toric varieties (2018) (arXiv:1807.11911, to appear in Math. Nachr.)
[Ful93] Introduction to toric varieties, Ann. of Math. Studies, 131, Princeton University Press, Princeton, NJ, 1993 | MR
[GKKP11] Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., Volume 114 (2011), pp. 87-169 | DOI | MR | Zbl
[HTT08] -modules, perverse sheaves, and representation theory, Progress in Math., 236, Birkhäuser, Boston, Basel, Berlin, 2008 | MR | Zbl
[Laz04] Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004 | MR | Zbl
[MP16] Hodge ideals (2016) (arXiv:1605.08088, to appear in Memoirs of the AMS) | Zbl
[MP18a] Hodge ideals for -divisors, -filtration, and minimal exponent (2018) (arXiv:1807.01935)
[MP18b] Restriction, subadditivity, and semicontinuity theorems for Hodge ideals, Internat. Math. Res. Notices (2018) no. 11, pp. 3587-3605 | DOI | MR | Zbl
[Pop19] -modules in birational geometry, Proceedings of the ICM (Rio de Janeiro, 2018), Vol. 2, World Scientific Publishing Co., Inc., River Edge, NJ, 2019, pp. 781-806
[Sai88] Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., Volume 24 (1988) no. 6, pp. 849-995 | DOI | MR | Zbl
[Sai90] Mixed Hodge modules, Publ. RIMS, Kyoto Univ., Volume 26 (1990) no. 2, pp. 221-333 | DOI | MR | Zbl
[Sai07] Direct image of logarithmic complexes and infinitesimal invariants of cycles, Algebraic cycles and motives. Vol. 2 (London Math. Soc. Lecture Note Ser.), Volume 344, Cambridge Univ. Press, Cambridge, 2007, pp. 304-318 | DOI | MR | Zbl
[Sai09] On the Hodge filtration of Hodge modules, Moscow Math. J., Volume 9 (2009) no. 1, pp. 161-191 | MR | Zbl
[Sai16] Hodge ideals and microlocal -filtration (2016) (arXiv:1612.08667)
[Sai17] A young person’s guide to mixed Hodge modules, Hodge theory and -analysis (Adv. Lect. Math. (ALM)), Volume 39, Int. Press, Somerville, MA, 2017, pp. 517-553 | MR | Zbl
[Zha18] Hodge filtration for -divisors with quasi-homogeneous isolated singularities (2018) (arXiv:1810.06656)
Cité par Sources :