Dans cet article, on s’intéresse à la propriété de superlensing des méta-matériaux, c’est-à-dire à la possibilité d’imager un objet arbitraire, sans condition sur le rapport entre sa taille et la longueur d’onde de la lumière incidente. Nous proposons et analysons deux types de dispositifs constitués de méta-matériaux hyperboliques, qui possèdent cette propriété. L’étude de tels milieux est délicate, car les EDP qui les modélisent changent de type : elles sont elliptiques dans certaines régions de l’espace et hyperboliques dans les autres.
This paper is devoted to superlensing using hyperbolic metamaterials: the possibility to image an arbitrary object using hyperbolic metamaterials without imposing any conditions on the size of the object and the wave length. To this end, two types of schemes are suggested and their analysis are given. The superlensing devices proposed are independent of the object. It is worth noting that the study of hyperbolic metamaterials is challenging due to the change of type of the modeling equations, elliptic in some regions, hyperbolic in some others.
Accepté le :
Publié le :
DOI : 10.5802/jep.61
Keywords: Negative index materials, hyperbolic meta-materials, superlensing, degenerate elliptic equations
Mot clés : Matériaux à indice négatif, méta-matériaux hyperboliques, superlensing, équations elliptiques dégénérées
@article{JEP_2017__4__973_0, author = {Bonnetier, Eric and Nguyen, Hoai-Minh}, title = {Superlensing using hyperbolic metamaterials: the scalar case}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {973--1003}, publisher = {Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.61}, mrnumber = {3714368}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.61/} }
TY - JOUR AU - Bonnetier, Eric AU - Nguyen, Hoai-Minh TI - Superlensing using hyperbolic metamaterials: the scalar case JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 973 EP - 1003 VL - 4 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.61/ DO - 10.5802/jep.61 LA - en ID - JEP_2017__4__973_0 ER -
%0 Journal Article %A Bonnetier, Eric %A Nguyen, Hoai-Minh %T Superlensing using hyperbolic metamaterials: the scalar case %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 973-1003 %V 4 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.61/ %R 10.5802/jep.61 %G en %F JEP_2017__4__973_0
Bonnetier, Eric; Nguyen, Hoai-Minh. Superlensing using hyperbolic metamaterials: the scalar case. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 973-1003. doi : 10.5802/jep.61. http://www.numdam.org/articles/10.5802/jep.61/
[1] Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl
[2] Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | DOI | MR | Zbl
[3] The Dirichlet problem for a vibrating string equation, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 851-859 | DOI | Zbl
[4] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | Zbl
[5] Topics in the mathematical modelling of composite materials, Progress in Nonlinear Differential Equations and their Applications, 31 (1997) | MR
[6]
(In preparation)[7] Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, 69, SIAM, Philadelphia, PA, 2011 | MR | Zbl
[8] Optical hyperlens: far-field imaging beyond the diffraction limit, Optics Express, Volume 14 (2006), pp. 8247-8256 | DOI
[9] The Dirichlet problem for a hyperbolic equation, Amer. J. Math., Volume 63 (1941), pp. 141-154 | DOI | MR | Zbl
[10] A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 | DOI | MR | Zbl
[11] Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) (093901) | DOI
[12] Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, Volume 315 (2007), p. 1686-1686 | DOI
[13] On the cloaking effects associated with anomalous localized resonance, Proc. Roy. Soc. London Ser. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | DOI | MR | Zbl
[14] Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Amer. Math. Soc., Volume 367 (2015) no. 9, pp. 6581-6595 | DOI | MR
[15] Superlensing using complementary media, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 32 (2015) no. 2, pp. 471-484 | DOI | MR | Zbl
[16] Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 6, pp. 1327-1365 | DOI | MR | Zbl
[17] Localized and complete resonance in plasmonic structures, ESAIM Math. Model. Numer. Anal., Volume 49 (2015) no. 3, pp. 741-754 | DOI | MR | Zbl
[18] Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | DOI | MR | Zbl
[19] Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl. (9), Volume 106 (2016) no. 2, pp. 342-374 | DOI | MR | Zbl
[20] Reflecting complementary and superlensing using complementary media for electromagnetic waves (2015) (arXiv:1511.08050)
[21] Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime, J. Anal. Math. (to appear) (arXiv:1511.08053) | Zbl
[22] Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case, SIAM J. Math. Anal. (to appear) (arXiv:1607.06492) | Zbl
[23] Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. Ser. B, Volume 2 (2015), pp. 93-112 | DOI | MR | Zbl
[24] Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994), pp. 8479-8482 | DOI
[25] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969 | DOI
[26] Perfect cylindrical lenses, Optics Express, Volume 1 (2003), pp. 755-760 | DOI
[27] Hyperbolic metamaterials, Nature Photonics, Volume 7 (2013), pp. 948-957 | DOI
[28] Unique continuation for elliptic equations, Trans. Amer. Math. Soc., Volume 95 (1960), pp. 81-91 | DOI | MR | Zbl
[29] Spherical perfect lens: solutions of Maxwell’s equations for spherical geometry, Phys. Rev. B, Volume 69 (2004) (115115)
[30] The electrodynamics of substances with simultaneously negative values of and , Uspehi Fiz. Nauk, Volume 92 (1964), pp. 517-526 | DOI
Cité par Sources :