Dans cet article nous étudions et mettons en relation les fonctions zêta non abéliennes introduites par Weng et les invariants des espaces de modules de paires stables de rang arbitraire sur les courbes. Nous prouvons une formule « wall-crossing » pour ces invariants et obtenons une formule explicite pour ceux-ci en terme du motif de la courbe. Auparavant, des formules pour ces invariants n’étaient connues qu’en rang par Thaddeus et en rang par Muñoz. En utilisant ces résultats nous obtenons une formule explicite pour les fonctions zêta non abéliennes, nous vérifions la conjecture d’uniformité de Weng pour les rangs et , et nous montrons sa conjecture de dénombrement miracle.
In this paper we study and relate the non-abelian zeta functions introduced by Weng and invariants of the moduli spaces of arbitrary rank stable pairs over curves. We prove a wall-crossing formula for the latter invariants and obtain an explicit formula for these invariants in terms of the motive of a curve. Previously, formulas for these invariants were known only for rank 2 due to Thaddeus and for rank 3 due to Muñoz. Using these results we obtain an explicit formula for the non-abelian zeta functions, we check the uniformity conjecture of Weng for the ranks 2 and 3, and we prove the counting miracle conjecture.
Keywords: Stable pairs, vector bundles, wall-crossing formulas, higher zeta functions
Mot clés : Paires stables, fibrés vectoriels, formules « wall-crossing », fonctions zêta supérieures
@article{JEP_2014__1__117_0, author = {Mozgovoy, Sergey and Reineke, Markus}, title = {Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {117--146}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.6}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.6/} }
TY - JOUR AU - Mozgovoy, Sergey AU - Reineke, Markus TI - Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 117 EP - 146 VL - 1 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.6/ DO - 10.5802/jep.6 LA - en ID - JEP_2014__1__117_0 ER -
%0 Journal Article %A Mozgovoy, Sergey %A Reineke, Markus %T Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 117-146 %V 1 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.6/ %R 10.5802/jep.6 %G en %F JEP_2014__1__117_0
Mozgovoy, Sergey; Reineke, Markus. Moduli spaces of stable pairs and non-abelian zeta functions of curves via wall-crossing. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 117-146. doi : 10.5802/jep.6. http://www.numdam.org/articles/10.5802/jep.6/
[1] The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl
[2] On the motivic class of the stack of bundles, Adv. in Math., Volume 212 (2007) no. 2, pp. 617-644 | DOI | MR | Zbl
[3] Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., 188 no. 883, American Mathematical Society, Providence, RI, 2007, pp. viii+207 | DOI | MR | Zbl
[4] Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom., Volume 33 (1991) no. 1, pp. 169-213 http://projecteuclid.org/getRecord?id=euclid.jdg/1214446034 | MR | Zbl
[5] Stable triples, equivariant bundles and dimensional reduction, Math. Ann., Volume 304 (1996) no. 2, pp. 225-252 (arXiv:alg-geom/9401008) | DOI | MR | Zbl
[6] Poincaré polynomials of the variety of stable bundles, Math. Ann., Volume 216 (1975) no. 3, pp. 233-244 | MR | Zbl
[7] Dimensional reduction of stable bundles, vortices and stable pairs, Internat. J. Math., Volume 5 (1994) no. 1, pp. 1-52 | DOI | MR | Zbl
[8] The -genus of the moduli space of -Higgs bundles on a curve (for degree coprime to ), Duke Math. J., Volume 162 (2013) no. 14, pp. 2731-2749 (arXiv:1207.5614) | DOI | MR
[9] On the motives of moduli of chains and Higgs bundles (2011) (arXiv:1104.5558)
[10] Homological algebra of twisted quiver bundles, J. London Math. Soc. (2), Volume 71 (2005) no. 1, pp. 85-99 (arXiv:math/0202033) | DOI | MR | Zbl
[11] On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., Volume 212 (1974/75), pp. 215-248 | MR | Zbl
[12] Stable pairs on curves and surfaces, J. Algebraic Geom., Volume 4 (1995) no. 1, pp. 67-104 (arXiv:alg-geom/9211001) | MR | Zbl
[13] Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (2008) (arXiv:0811.2435)
[14] The Langlands lemma and the Betti numbers of stacks of -bundles on a curve, Internat. J. Math., Volume 7 (1996) no. 1, pp. 29-45 (arXiv:alg-geom/9503006) | DOI | MR | Zbl
[15] Poincaré polynomials of moduli spaces of stable bundles over curves, Manuscripta Math., Volume 131 (2010) no. 1-2, pp. 63-86 (arXiv:0711.0634) | DOI | MR | Zbl
[16] Hodge polynomials of the moduli spaces of rank 3 pairs, Geometriae Dedicata, Volume 136 (2008), pp. 17-46 (arXiv:0706.0593) | DOI | MR | Zbl
[17] Motives and the Hodge Conjecture for moduli spaces of pairs (2012) (arXiv:1207.5120) | MR
[18] Hodge polynomials of the moduli spaces of pairs, Internat. J. Math., Volume 18 (2007) no. 6, pp. 695-721 (arXiv:math/0606676) | DOI | MR | Zbl
[19] The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003) no. 2, pp. 349-368 (arXiv:math/0204059) | DOI | MR | Zbl
[20] Counting rational points of quiver moduli, Internat. Math. Res. Notices, Volume 17 (2006) (ID 70456, arXiv:math/0505389) | DOI | MR | Zbl
[21] Moduli problems of sheaves associated with oriented trees, Algebr. Represent. Theory, Volume 6 (2003) no. 1, pp. 1-32 | DOI | MR | Zbl
[22] Stable pairs, linear systems and the Verlinde formula, Invent. Math., Volume 117 (1994) no. 2, pp. 317-353 (arXiv:alg-geom/9210007) | DOI | MR | Zbl
[23] Special Uniformity of Zeta Functions I. Geometric Aspect (2012) (arXiv:1203.2305)
[24] Zeta Functions for Elliptic Curves I. Counting Bundles (2012) (arXiv:1202.0870)
[25] Zeta functions for function fields (2012) (arXiv:1202.3183)
[26] Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Israel Math. Conf. Proc.), Volume 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 445-462 | MR | Zbl
Cité par Sources :