Nous introduisons une forme pré-modulaire de poids pour chaque , avec , de sorte que pour , tout zéro non trivial de , c’est-à-dire que n’est pas de -torsion dans , correspond à une (famille de) solution de l’équation
sur le tore plat avec .
Dans la partie I [1], nous avons construit une courbe hyperelliptique , la courbe de Lamé, associée à l’équation (MFE). Notre construction de s’appuie sur une étude détaillée de la correspondance induite par la projection hyperelliptique et l’application d’addition.
Dans l’appendice, Y.-C. Chou donne, comme application de l’expression explicite de la forme pré-modulaire de poids , une formule de comptage pour les équations de Lamé de degré avec monodromie finie.
A pre-modular form of weight is introduced for each , where , such that for , every non-trivial zero of , i.e. is not a -torsion of , corresponds to a (scaling family of) solution to the equation
on the flat torus with singular strength .
In Part I [1], a hyperelliptic curve , the Lamé curve, associated to the MFE was constructed. Our construction of relies on a detailed study of the correspondence induced from the hyperelliptic projection and the addition map.
As an application of the explicit form of the weight pre-modular form , a counting formula for Lamé equations of degree with finite monodromy is given in the appendix (by Y.-C. Chou).
Accepté le :
Publié le :
DOI : 10.5802/jep.51
Keywords: Lamé curve, Hecke function, pre-modular form
Mot clés : Courbe de Lamé, fonction de Hecke, forme pré-modulaire
@article{JEP_2017__4__557_0, author = {Lin, Chang-Shou and Wang, Chin-Lung}, title = {Mean field equations, hyperelliptic curves and modular forms: {II}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {557--593}, publisher = {Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.51}, mrnumber = {3665608}, zbl = {1376.33022}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.51/} }
TY - JOUR AU - Lin, Chang-Shou AU - Wang, Chin-Lung TI - Mean field equations, hyperelliptic curves and modular forms: II JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 557 EP - 593 VL - 4 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.51/ DO - 10.5802/jep.51 LA - en ID - JEP_2017__4__557_0 ER -
%0 Journal Article %A Lin, Chang-Shou %A Wang, Chin-Lung %T Mean field equations, hyperelliptic curves and modular forms: II %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 557-593 %V 4 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.51/ %R 10.5802/jep.51 %G en %F JEP_2017__4__557_0
Lin, Chang-Shou; Wang, Chin-Lung. Mean field equations, hyperelliptic curves and modular forms: II. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593. doi : 10.5802/jep.51. http://www.numdam.org/articles/10.5802/jep.51/
[1] Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Volume 3 (2015) no. 1-2, pp. 127-274 | DOI | MR
[2] Green function, Painlevé VI equation, and Eisentein series of weight one, J. Differential Geometry (to appear)
[3] Counting integral Lamé equations with finite monodromy by means of modular forms, Master Thesis, Utrecht University (2003)
[4] Counting integral Lamé equations by means of dessins d’enfants, Trans. Amer. Math. Soc., Volume 359 (2007) no. 2, pp. 909-922 | DOI | MR | Zbl
[5] Traité des fonctions elliptique II, Gauthier-Villars, Paris, 1888
[6] Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977 | Zbl
[7] Introduction to algebraic geometry, Cambridge University Press, Cambridge, 2007, xii+252 pages | DOI | MR | Zbl
[8] Zur Theorie der elliptischen Modulfunctionen, Math. Ann., Volume 97 (1926), pp. 210-242 | DOI | Zbl
[9] Elliptic functions, Green functions and the mean field equations on tori, Ann. of Math. (2), Volume 172 (2010) no. 2, pp. 911-954 | DOI | MR
[10] A function theoretic view of the mean field equations on tori, Recent advances in geometric analysis (Adv. Lect. Math. (ALM)), Volume 11, Int. Press, Somerville, MA, 2010, pp. 173-193 | MR
[11] On the minimality of extra critical points of Green functions on flat tori, Internat. Math. Res. Notices (2016) (doi:10.1093/imrn/rnw176) | DOI
[12] Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. Roy. Soc. London Ser. A, Volume 366 (2008) no. 1867, pp. 1115-1153 | DOI | Zbl
[13] Abelian varieties, Oxford University Press, Cambridge, 1974
[14] A course of modern analysis, Cambridge University Press, Cambridge, 1927 | Zbl
Cité par Sources :