Mean field equations, hyperelliptic curves and modular forms: II
[Équations de champ moyen, courbes hyperelliptiques et formes modulaires : II]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593.

Nous introduisons une forme pré-modulaire Z n (σ;τ) de poids 1 2n(n+1) pour chaque n, avec (σ,τ)×, de sorte que pour E τ =/(+τ), tout zéro non trivial de Z n (σ;τ), c’est-à-dire que σ n’est pas de 2-torsion dans E τ , correspond à une (famille de) solution de l’équation

u+e u =ρδ 0 ,(MFE)

sur le tore plat E τ avec ρ=8πn.

Dans la partie I [1], nous avons construit une courbe hyperelliptique X ¯ n (τ)Sym n E τ , la courbe de Lamé, associée à l’équation (MFE). Notre construction de Z n (σ;τ) s’appuie sur une étude détaillée de la correspondance 1 ()X ¯ n (τ)E τ induite par la projection hyperelliptique et l’application d’addition.

Dans l’appendice, Y.-C. Chou donne, comme application de l’expression explicite de la forme Z 4 (σ;τ) pré-modulaire de poids 10, une formule de comptage pour les équations de Lamé de degré n=4 avec monodromie finie.

A pre-modular form Z n (σ;τ) of weight 1 2n(n+1) is introduced for each n, where (σ,τ)×, such that for E τ =/(+τ), every non-trivial zero of Z n (σ;τ), i.e. σ is not a 2-torsion of E τ , corresponds to a (scaling family of) solution to the equation

u+e u =ρδ 0 ,(MFE)

on the flat torus E τ with singular strength ρ=8πn.

In Part I [1], a hyperelliptic curve X ¯ n (τ)Sym n E τ , the Lamé curve, associated to the MFE was constructed. Our construction of Z n (σ;τ) relies on a detailed study of the correspondence 1 ()X ¯ n (τ)E τ induced from the hyperelliptic projection and the addition map.

As an application of the explicit form of the weight 10 pre-modular form Z 4 (σ;τ), a counting formula for Lamé equations of degree n=4 with finite monodromy is given in the appendix (by Y.-C. Chou).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.51
Classification : 33E10, 35J08, 35J75, 14H70
Keywords: Lamé curve, Hecke function, pre-modular form
Mot clés : Courbe de Lamé, fonction de Hecke, forme pré-modulaire
Lin, Chang-Shou 1 ; Wang, Chin-Lung 2

1 Department of Mathematics and Center for Advanced Studies in Theoretic Sciences (CASTS), National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106
2 Department of Mathematics and Taida Institute of Mathematical Sciences (TIMS), National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106
@article{JEP_2017__4__557_0,
     author = {Lin, Chang-Shou and Wang, Chin-Lung},
     title = {Mean field equations, hyperelliptic curves and modular forms: {II}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {557--593},
     publisher = {Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.51},
     mrnumber = {3665608},
     zbl = {1376.33022},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.51/}
}
TY  - JOUR
AU  - Lin, Chang-Shou
AU  - Wang, Chin-Lung
TI  - Mean field equations, hyperelliptic curves and modular forms: II
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 557
EP  - 593
VL  - 4
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.51/
DO  - 10.5802/jep.51
LA  - en
ID  - JEP_2017__4__557_0
ER  - 
%0 Journal Article
%A Lin, Chang-Shou
%A Wang, Chin-Lung
%T Mean field equations, hyperelliptic curves and modular forms: II
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 557-593
%V 4
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.51/
%R 10.5802/jep.51
%G en
%F JEP_2017__4__557_0
Lin, Chang-Shou; Wang, Chin-Lung. Mean field equations, hyperelliptic curves and modular forms: II. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593. doi : 10.5802/jep.51. http://www.numdam.org/articles/10.5802/jep.51/

[1] Chai, C.-L.; Lin, C.-S.; Wang, C.-L. Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Volume 3 (2015) no. 1-2, pp. 127-274 | DOI | MR

[2] Chen, Z.; Kuo, K.-J.; Lin, C.-S.; Wang, C.-L. Green function, Painlevé VI equation, and Eisentein series of weight one, J. Differential Geometry (to appear)

[3] Dahmen, S. Counting integral Lamé equations with finite monodromy by means of modular forms, Master Thesis, Utrecht University (2003)

[4] Dahmen, S. Counting integral Lamé equations by means of dessins d’enfants, Trans. Amer. Math. Soc., Volume 359 (2007) no. 2, pp. 909-922 | DOI | MR | Zbl

[5] Halphen, G.-H. Traité des fonctions elliptique II, Gauthier-Villars, Paris, 1888

[6] Hartshorne, R. Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977 | Zbl

[7] Hassett, B. Introduction to algebraic geometry, Cambridge University Press, Cambridge, 2007, xii+252 pages | DOI | MR | Zbl

[8] Hecke, E. Zur Theorie der elliptischen Modulfunctionen, Math. Ann., Volume 97 (1926), pp. 210-242 | DOI | Zbl

[9] Lin, C.-S.; Wang, C.-L. Elliptic functions, Green functions and the mean field equations on tori, Ann. of Math. (2), Volume 172 (2010) no. 2, pp. 911-954 | DOI | MR

[10] Lin, C.-S.; Wang, C.-L. A function theoretic view of the mean field equations on tori, Recent advances in geometric analysis (Adv. Lect. Math. (ALM)), Volume 11, Int. Press, Somerville, MA, 2010, pp. 173-193 | MR

[11] Lin, C.-S.; Wang, C.-L. On the minimality of extra critical points of Green functions on flat tori, Internat. Math. Res. Notices (2016) (doi:10.1093/imrn/rnw176) | DOI

[12] Maier, R. S. Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. Roy. Soc. London Ser. A, Volume 366 (2008) no. 1867, pp. 1115-1153 | DOI | Zbl

[13] Mumford, D. Abelian varieties, Oxford University Press, Cambridge, 1974

[14] Whittaker, E. T.; Watson, G. N. A course of modern analysis, Cambridge University Press, Cambridge, 1927 | Zbl

Cité par Sources :