Nous considérons l’opérateur de Schrödinger sur , où est un domaine fixé de . Nous étudions certains problèmes d’optimisation pour lesquels un potentiel optimal doit être déterminé dans une certaine classe admissible et pour certains critères d’optimisation tels que l’énergie ou les valeurs propres de Dirichlet.
We consider the Schrödinger operator on , where is a given domain of . Our goal is to study some optimization problems where an optimal potential has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
Keywords: Schrödinger operators, optimal potentials, spectral optimization, capacity
Mot clés : Opérateurs de Schrödinger, potentiels optimaux, optimisation spectrale, capacité
@article{JEP_2014__1__71_0, author = {Buttazzo, Giuseppe and Gerolin, Augusto and Ruffini, Berardo and Velichkov, Bozhidar}, title = {Optimal potentials for {Schr\"odinger~operators}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {71--100}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.4}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.4/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Gerolin, Augusto AU - Ruffini, Berardo AU - Velichkov, Bozhidar TI - Optimal potentials for Schrödinger operators JO - Journal de l’École polytechnique — Mathématiques PY - 2014 SP - 71 EP - 100 VL - 1 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.4/ DO - 10.5802/jep.4 LA - en ID - JEP_2014__1__71_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Gerolin, Augusto %A Ruffini, Berardo %A Velichkov, Bozhidar %T Optimal potentials for Schrödinger operators %J Journal de l’École polytechnique — Mathématiques %D 2014 %P 71-100 %V 1 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.4/ %R 10.5802/jep.4 %G en %F JEP_2014__1__71_0
Buttazzo, Giuseppe; Gerolin, Augusto; Ruffini, Berardo; Velichkov, Bozhidar. Optimal potentials for Schrödinger operators. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 71-100. doi : 10.5802/jep.4. http://www.numdam.org/articles/10.5802/jep.4/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105-144 | MR | Zbl
[2] Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys., Volume 28 (1987) no. 8, pp. 1770-1786 | DOI | MR | Zbl
[3] Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 4, pp. 1149-1163 | DOI | Numdam | MR | Zbl
[4] Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005, pp. viii+216 | MR | Zbl
[5] On the characterization of the compact embedding of Sobolev spaces, Calc. Var. Partial Differential Equations, Volume 44 (2012) no. 3-4, pp. 455-475 | DOI | MR | Zbl
[6] Spectral optimization problems for potentials and measures (Preprint available at http://cvgmt.sns.it)
[7] Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics Series, 207, Longman Scientific & Technical, Harlow, 1989, pp. iv+222 | MR | Zbl
[8] Spectral optimization problems, Rev. Mat. Univ. Complut. Madrid, Volume 24 (2011) no. 2, pp. 277-322 | DOI | MR | Zbl
[9] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim., Volume 23 (1991) no. 1, pp. 17-49 | DOI | MR | Zbl
[10] An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal., Volume 122 (1993) no. 2, pp. 183-195 | DOI | MR | Zbl
[11] Optimal measures for elliptic problems, Ann. Mat. Pura Appl. (4), Volume 185 (2006) no. 2, pp. 207-221 | DOI | MR | Zbl
[12] Stability estimates for the lowest eigenvalue of a Schrödinger operator, Geom. Funct. Anal., Volume 24 (2014) no. 1, pp. 63-84 | DOI | MR
[13] An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993, pp. xiv+340 | DOI | MR | Zbl
[14] Wiener’s criterion and -convergence, Appl. Math. Optim., Volume 15 (1987) no. 1, pp. 15-63 | DOI | MR | Zbl
[15] Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 14 (1987) no. 1, pp. 1-48 | Numdam | MR | Zbl
[16] On estimating eigenvalues of a second order linear differential operator, General inequalities, 5 (Oberwolfach, 1986) (Internat. Schriftenreihe Numer. Math.), Volume 80, Birkhäuser, Basel, 1987, pp. 347-366 | MR | Zbl
[17] Partial differential equations, Graduate Texts in Math., 19, American Mathematical Society, Providence, RI, 2010, pp. xxii+749 | MR | Zbl
[18] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992, pp. viii+268 | MR | Zbl
[19] Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, pp. xiv+517 | MR | Zbl
[20] Hamiltonian operators with maximal eigenvalues, J. Math. Phys., Volume 25 (1984) no. 1, pp. 48-51 Erratum: J. Math. Phys. 27 (1986) no. 1, p. 419 | DOI | MR | Zbl
[21] Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ., Volume 3 (2003) no. 3, pp. 443-461 | DOI | MR | Zbl
[22] Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006, pp. x+202 | MR | Zbl
[23] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), 48, Springer, Berlin, 2005, pp. xii+334 | MR | Zbl
[24] Estimates for eigenvalues of Sturm-Liouville problems, General inequalities, 4 (Oberwolfach, 1983) (Internat. Schriftenreihe Numer. Math.), Volume 71, Birkhäuser, Basel, 1984, pp. 341-350 | MR | Zbl
Cité par Sources :