Nous étudions la loi de probabilité modulo des valeurs prises sur les entiers par formes linéaires de variables à coefficients aléatoires. Nous montrons un théorème central limite, « en moyenne » et « presque sûr », pour le nombre de points atteignant simultanément des cibles de rayon décroissant à une vitesse . D’après le théorème de Khintchine-Groshev sur les approximations diophantiennes, est le seuil critique à partir duquel le nombre des points tend vers l’infini.
We study the distribution modulo of the values taken on the integers of linear forms in variables with random coefficients. We obtain quenched and annealed central limit theorems for the number of simultaneous hits into shrinking targets of radii . By the Khintchine-Groshev theorem on Diophantine approximations, is the critical exponent for the infinite number of hits.
Accepté le :
Publié le :
DOI : 10.5802/jep.37
Keywords: Central limit theorem, weakly dependent random variables, diophantine approximation, linear forms, space of lattices
Mot clés : Théorème central limite, variables aléatoires faiblement dépendantes, approximation diophantienne, formes linéaires, espace de réseaux
@article{JEP_2017__4__1_0, author = {Dolgopyat, Dmitry and Fayad, Bassam and Vinogradov, Ilya}, title = {Central limit theorems for simultaneous {Diophantine} approximations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1--35}, publisher = {Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.37}, mrnumber = {3583273}, zbl = {1387.60046}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.37/} }
TY - JOUR AU - Dolgopyat, Dmitry AU - Fayad, Bassam AU - Vinogradov, Ilya TI - Central limit theorems for simultaneous Diophantine approximations JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 1 EP - 35 VL - 4 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.37/ DO - 10.5802/jep.37 LA - en ID - JEP_2017__4__1_0 ER -
%0 Journal Article %A Dolgopyat, Dmitry %A Fayad, Bassam %A Vinogradov, Ilya %T Central limit theorems for simultaneous Diophantine approximations %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 1-35 %V 4 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.37/ %R 10.5802/jep.37 %G en %F JEP_2017__4__1_0
Dolgopyat, Dmitry; Fayad, Bassam; Vinogradov, Ilya. Central limit theorems for simultaneous Diophantine approximations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 1-35. doi : 10.5802/jep.37. http://www.numdam.org/articles/10.5802/jep.37/
[1] Spiraling of approximations and spherical averages of Siegel transforms, J. London Math. Soc. (2), Volume 91 (2015) no. 2, pp. 383-404 | DOI | MR | Zbl
[2] Spherical averages of Siegel transforms for higher rank diagonal actions and applications (2014) (arXiv:1407.3573)
[3] Ergodic theory and Diophantine approximation for linear forms and translation surfaces, Nonlinearity, Volume 29 (2016) no. 8, pp. 2173-2190 | DOI | Zbl
[4] Inhomogeneous theory of dual Diophantine approximation on manifolds, Adv. Math., Volume 232 (2013), pp. 1-35 | DOI | MR | Zbl
[5] Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds, Moscow Math. J., Volume 2 (2002) no. 2, pp. 203-225 | DOI | MR | Zbl
[6] Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Internat. Math. Res. Notices (2010) no. 1, pp. 69-86 | MR | Zbl
[7] An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, New York, 1957 | MR | Zbl
[8] Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | Zbl
[9] Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. reine angew. Math., Volume 359 (1985), pp. 55-89 Erratum: Ibid, 360 (1985), p. 214 | MR | Zbl
[10] Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., Volume 356 (2004) no. 4, pp. 1637-1689 | DOI | MR | Zbl
[11] Deviations of ergodic sums for toral translations II. Boxes (2012) (arXiv:1211.4323)
[12] Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | DOI | MR | Zbl
[13] The rate of mixing for diagonal flows on spaces of affine lattices (2013) (preprint, diva2:618047)
[14] The distribution of directions in an affine lattice: two-point correlations and mixed moments, Internat. Math. Res. Notices (2015) no. 5, pp. 1371-1400 | MR | Zbl
[15] A theorem on a system of linear forms, Dokl. Akad. Nauk SSSR, Volume 19 (1938), pp. 151-152
[16] An introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York, 1979 | Zbl
[17] Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen, Math. Z., Volume 18 (1923), pp. 289-306 | DOI | Zbl
[18] Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., Volume 92 (1924), pp. 115-125 | DOI | Zbl
[19] Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaĭ’s Moscow Seminar on Dynamical Systems (Amer. Math. Soc. Transl. Ser. 2), Volume 171, American Mathematical Society, Providence, RI, 1996, pp. 141-172 | MR | Zbl
[20] Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 451-494 | DOI | MR | Zbl
[21] Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann. (2016) (doi:10.1007/s00208-016-1404-3, arXiv:1505.06717)
[22] Principes d’invariance pour les flots diagonaux sur , Ann. Inst. H. Poincaré Probab. Statist., Volume 38 (2002) no. 4, pp. 581-612 | DOI | MR | Zbl
[23] The -point correlations between values of a linear form, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 4, pp. 1127-1172 | DOI | MR
[24] Distribution modulo one and Ratner’s theorem, Equidistribution in number theory, an introduction (NATO Sci. Ser. II Math. Phys. Chem.), Volume 237, Springer, Dordrecht, 2007, pp. 217-244 | DOI | MR | Zbl
[25] Mixing sequences of random variables and probabilistic number theory, Mem. Amer. Math. Soc., 114, American Mathematical Society, Providence, RI, 1971 | Zbl
[26] The central limit theorem for geodesic flows on -dimensional manifolds of negative curvature, Israel J. Math., Volume 16 (1973), pp. 181-197 | DOI | MR | Zbl
[27] A functional central limit theorem in Diophantine approximation, Proc. Amer. Math. Soc., Volume 111 (1991) no. 4, pp. 901-911 | DOI | MR | Zbl
[28] A metrical theorem in Diophantine approximation, Canad. J. Math., Volume 12 (1960), pp. 619-631 | DOI | MR | Zbl
[29] Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc., Volume 110 (1964), pp. 493-518 | DOI | MR | Zbl
[30] Badly approximable systems of linear forms, J. Number Theory, Volume 1 (1969), pp. 139-154 | DOI | MR | Zbl
[31] The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl., Volume 1 (1960), pp. 983-987 | MR | Zbl
[32] An effective Ratner equidistribution result for , Duke Math. J., Volume 164 (2015) no. 5, pp. 843-902 | DOI | MR
Cité par Sources :