[Critères de transcendance différentielle pour les équations aux différences du deuxième ordre et les fonctions hypergéométriques elliptiques]
Dans cet article, nous développons des critères généraux garantissant la transcendance différentielle d’une solution non nulle donnée d’une équation aux différences du deuxième ordre. Ces critères s’appliquent à de nombreuses équations, telles que les équations aux différences finies, les équations aux
We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations,
Accepté le :
Publié le :
DOI : 10.5802/jep.143
Keywords: Linear difference equations, difference Galois theory, elliptic curves, differential algebra
Mot clés : Équations aux différences linéaires, théorie de Galois aux différences, courbe elliptiques, algèbre différentielle
@article{JEP_2021__8__147_0, author = {Arreche, Carlos E. and Dreyfus, Thomas and Roques, Julien}, title = {Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {147--169}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.143}, mrnumber = {4201803}, zbl = {07315954}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.143/} }
TY - JOUR AU - Arreche, Carlos E. AU - Dreyfus, Thomas AU - Roques, Julien TI - Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions JO - Journal de l’École polytechnique - Mathématiques PY - 2021 SP - 147 EP - 169 VL - 8 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.143/ DO - 10.5802/jep.143 LA - en ID - JEP_2021__8__147_0 ER -
%0 Journal Article %A Arreche, Carlos E. %A Dreyfus, Thomas %A Roques, Julien %T Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions %J Journal de l’École polytechnique - Mathématiques %D 2021 %P 147-169 %V 8 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.143/ %R 10.5802/jep.143 %G en %F JEP_2021__8__147_0
Arreche, Carlos E.; Dreyfus, Thomas; Roques, Julien. Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 147-169. doi : 10.5802/jep.143. https://www.numdam.org/articles/10.5802/jep.143/
[Arr17] Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1650056, 42 pages | DOI | MR | Zbl
[AS17] Galois groups for integrable and projectively integrable linear difference equations, J. Algebra, Volume 480 (2017), pp. 423-449 | DOI | MR | Zbl
[DHR18] Hypertranscendence of solutions of Mahler equations, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 9, pp. 2209-2238 | DOI | MR | Zbl
[DHR21] Functional relations of solutions of
[DHRS18] On the nature of the generating series of walks in the quarter plane, Invent. Math., Volume 213 (2018) no. 1, pp. 139-203 | DOI | MR | Zbl
[DHRS20] Walks in the quarter plane: genus zero case, J. Combin. Theory Ser. A, Volume 174 (2020), p. 105251, 25 | DOI | MR | Zbl
[DR15] Galois groups of difference equations of order two on elliptic curves, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR | Zbl
[DR19] Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks, Publ. Math. Besançon (2019) no. 1, pp. 41-80 | DOI | Zbl
[Hen97] An algorithm for computing a standard form for second-order linear
[Hen98] An algorithm determining the difference Galois group of second order linear difference equations, J. Symbolic Comput., Volume 26 (1998) no. 4, pp. 445-461 | DOI | MR | Zbl
[HS08] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 Erratum: Ibid. 350 (2011), no. 1, p. 243–244 | DOI | MR | Zbl
[Höl86] Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen, Math. Ann., Volume 28 (1886), pp. 1-13 | DOI | Zbl
[Kol73] Differential algebra and algebraic groups, Pure and Applied Math., 54, Academic Press, New York-London, 1973 | MR | Zbl
[Kol74] Constrained extensions of differential fields, Adv. Math., Volume 12 (1974), pp. 141-170 | DOI | MR | Zbl
[Mag09] Elliptic hypergeometric solutions to elliptic difference equations, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 5 (2009), 038, 12 pages | DOI | MR | Zbl
[Mum07] Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 (Reprint of the 1983 edition) | DOI | Zbl
[Rai10] Transformations of elliptic hypergeometric integrals, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 169-243 | DOI | MR | Zbl
[Roq11] Generalized basic hypergeometric equations, Invent. Math., Volume 184 (2011) no. 3, 059, pp. 499-528 | DOI | MR | Zbl
[Roq18] On the algebraic relations between Mahler functions, Trans. Amer. Math. Soc., Volume 370 (2018) no. 1, pp. 321-355 | DOI | MR | Zbl
[RS20] Multidimensional matrix inversions and elliptic hypergeometric series on root systems, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 088, 21 pages | DOI | MR
[Spi16] Elliptic hypergeometric functions, 2016 | arXiv | DOI
[van de Bult + 07] et al. Hyperbolic hypergeometric functions, University of Amsterdam, Amsterdam Netherlands, 2007 | DOI
[van de BultR09] Basic hypergeometric functions as limits of elliptic hypergeometric functions, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 5 (2009), 059, 31 pages | DOI | MR | Zbl
[van der PutS97] Galois theory of difference equations, Lect. Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | arXiv | DOI | MR | Zbl
Cité par Sources :