[Critères de transcendance différentielle pour les équations aux différences du deuxième ordre et les fonctions hypergéométriques elliptiques]
Dans cet article, nous développons des critères généraux garantissant la transcendance différentielle d’une solution non nulle donnée d’une équation aux différences du deuxième ordre. Ces critères s’appliquent à de nombreuses équations, telles que les équations aux différences finies, les équations aux -différences, les équations de Mahler, ou encore les équations aux différences elliptiques. Notre approche repose sur la théorie de Galois des équations aux différences. En guise d’application, nous démontrons que la plupart des fonctions hypergéométriques elliptiques sont différentiellement transcendantes.
We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, -dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.
Accepté le :
Publié le :
DOI : 10.5802/jep.143
Keywords: Linear difference equations, difference Galois theory, elliptic curves, differential algebra
Mot clés : Équations aux différences linéaires, théorie de Galois aux différences, courbe elliptiques, algèbre différentielle
@article{JEP_2021__8__147_0, author = {Arreche, Carlos E. and Dreyfus, Thomas and Roques, Julien}, title = {Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {147--169}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.143}, mrnumber = {4201803}, zbl = {07315954}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.143/} }
TY - JOUR AU - Arreche, Carlos E. AU - Dreyfus, Thomas AU - Roques, Julien TI - Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 147 EP - 169 VL - 8 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.143/ DO - 10.5802/jep.143 LA - en ID - JEP_2021__8__147_0 ER -
%0 Journal Article %A Arreche, Carlos E. %A Dreyfus, Thomas %A Roques, Julien %T Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 147-169 %V 8 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.143/ %R 10.5802/jep.143 %G en %F JEP_2021__8__147_0
Arreche, Carlos E.; Dreyfus, Thomas; Roques, Julien. Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 147-169. doi : 10.5802/jep.143. http://www.numdam.org/articles/10.5802/jep.143/
[Arr17] Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1650056, 42 pages | DOI | MR | Zbl
[AS17] Galois groups for integrable and projectively integrable linear difference equations, J. Algebra, Volume 480 (2017), pp. 423-449 | DOI | MR | Zbl
[DHR18] Hypertranscendence of solutions of Mahler equations, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 9, pp. 2209-2238 | DOI | MR | Zbl
[DHR21] Functional relations of solutions of -difference equations, Math. Z. (2021) (doi:10.1007/s00209-020-02669-4) | DOI
[DHRS18] On the nature of the generating series of walks in the quarter plane, Invent. Math., Volume 213 (2018) no. 1, pp. 139-203 | DOI | MR | Zbl
[DHRS20] Walks in the quarter plane: genus zero case, J. Combin. Theory Ser. A, Volume 174 (2020), p. 105251, 25 | DOI | MR | Zbl
[DR15] Galois groups of difference equations of order two on elliptic curves, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR | Zbl
[DR19] Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks, Publ. Math. Besançon (2019) no. 1, pp. 41-80 | DOI | Zbl
[Hen97] An algorithm for computing a standard form for second-order linear -difference equations, J. Pure Appl. Algebra, Volume 117/118 (1997), pp. 331-352 Algorithms for algebra (Eindhoven, 1996) | DOI | MR | Zbl
[Hen98] An algorithm determining the difference Galois group of second order linear difference equations, J. Symbolic Comput., Volume 26 (1998) no. 4, pp. 445-461 | DOI | MR | Zbl
[HS08] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 Erratum: Ibid. 350 (2011), no. 1, p. 243–244 | DOI | MR | Zbl
[Höl86] Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen, Math. Ann., Volume 28 (1886), pp. 1-13 | DOI | Zbl
[Kol73] Differential algebra and algebraic groups, Pure and Applied Math., 54, Academic Press, New York-London, 1973 | MR | Zbl
[Kol74] Constrained extensions of differential fields, Adv. Math., Volume 12 (1974), pp. 141-170 | DOI | MR | Zbl
[Mag09] Elliptic hypergeometric solutions to elliptic difference equations, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 5 (2009), 038, 12 pages | DOI | MR | Zbl
[Mum07] Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 (Reprint of the 1983 edition) | DOI | Zbl
[Rai10] Transformations of elliptic hypergeometric integrals, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 169-243 | DOI | MR | Zbl
[Roq11] Generalized basic hypergeometric equations, Invent. Math., Volume 184 (2011) no. 3, 059, pp. 499-528 | DOI | MR | Zbl
[Roq18] On the algebraic relations between Mahler functions, Trans. Amer. Math. Soc., Volume 370 (2018) no. 1, pp. 321-355 | DOI | MR | Zbl
[RS20] Multidimensional matrix inversions and elliptic hypergeometric series on root systems, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 088, 21 pages | DOI | MR
[Spi16] Elliptic hypergeometric functions, 2016 | arXiv | DOI
[van de Bult + 07] et al. Hyperbolic hypergeometric functions, University of Amsterdam, Amsterdam Netherlands, 2007 | DOI
[van de BultR09] Basic hypergeometric functions as limits of elliptic hypergeometric functions, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 5 (2009), 059, 31 pages | DOI | MR | Zbl
[van der PutS97] Galois theory of difference equations, Lect. Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | arXiv | DOI | MR | Zbl
Cité par Sources :