Nous introduisons un invariant des sous-variétés legendriennes construit à l’aide de fonctions génératrices. Cet invariant est défini pour une certaine classe de sous-variétés legendriennes, que nous appelons de type d’Euler, dans un espace de -jets. Nous utilisons cet invariant pour étudier les mailles legendriennes : une famille de sous-variétés legendriennes de type d’Euler dont le motif d’entrelac est déterminé par un graphe bicolore et trivalent qui est muni d’un ordre cyclique des arêtes concourantes en un même sommet. La torsion de Turaev d’une maille legendrienne est reliée à une certaine monodromie de glissement d’anses, que nous calculons en terme de la combinatoire du graphe. Comme application, nous exhibons, dans l’espace des -jets de toute surface fermée orientable, des paires d’entrelacs legendriens qui sont formellement équivalents, ne peuvent être distingués par aucun invariant legendrien naturel, et pourtant ne sont pas isotopes parmi les variétés legendriennes. Ces exemples sont apparus sous une forme différente dans les travaux du second auteur avec J. Klein sur des dessins pour et sur la torsion de Reidemeister supérieure de fibrés en cercles.
We introduce a Legendrian invariant built out of the Turaev torsion of generating families. This invariant is defined for a certain class of Legendrian submanifolds of -jet spaces, which we call of Euler type. We use our invariant to study mesh Legendrians: a family of -dimensional Euler type Legendrian links whose linking pattern is determined by a bicolored trivalent ribbon graph. The Turaev torsion of mesh Legendrians is related to a certain monodromy of handle slides, which we compute in terms of the combinatorics of the graph. As an application, we exhibit pairs of Legendrian links in the -jet space of any orientable closed surface which are formally equivalent, cannot be distinguished by any natural Legendrian invariant, yet are not Legendrian isotopic. These examples appeared in a different guise in the work of the second author with J. Klein on pictures for and the higher Reidemeister torsion of circle bundles.
Accepté le :
Publié le :
DOI : 10.5802/jep.141
Keywords: Legendrians, Turaev torsion, K-theory
Mot clés : Legendriennes, torsion de Turaev, K-théorie
@article{JEP_2021__8__57_0, author = {\'Alvarez-Gavela, Daniel and Igusa, Kiyoshi}, title = {A {Legendrian} {Turaev} torsion via generating~families}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {57--119}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.141}, mrnumber = {4180260}, zbl = {07282222}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.141/} }
TY - JOUR AU - Álvarez-Gavela, Daniel AU - Igusa, Kiyoshi TI - A Legendrian Turaev torsion via generating families JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 57 EP - 119 VL - 8 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.141/ DO - 10.5802/jep.141 LA - en ID - JEP_2021__8__57_0 ER -
%0 Journal Article %A Álvarez-Gavela, Daniel %A Igusa, Kiyoshi %T A Legendrian Turaev torsion via generating families %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 57-119 %V 8 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.141/ %R 10.5802/jep.141 %G en %F JEP_2021__8__57_0
Álvarez-Gavela, Daniel; Igusa, Kiyoshi. A Legendrian Turaev torsion via generating families. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 57-119. doi : 10.5802/jep.141. http://www.numdam.org/articles/10.5802/jep.141/
[AGZV12] Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012 | Zbl
[AK18] Simple homotopy equivalence of nearby Lagrangians, Acta Math., Volume 220 (2018) no. 2, pp. 207-237 | DOI | MR | Zbl
[Bar64] On the structure and classification of differential manifolds, Ph. D. Thesis, Cambridge University (1964)
[BFG + 18] Friezes satisfying higher -determinants, 2018 (to appear in Algebra & Number Theory) | arXiv
[BL95] Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363 | DOI | MR | Zbl
[Cer70] La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. Inst. Hautes Études Sci., Volume 39 (1970), pp. 5-173 | Numdam | MR | Zbl
[Cha84] Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984) no. 13, pp. 293-296 | Zbl
[Cha19] Quantum Reidemeister torsion, open Gromov-Witten invariants and a spectral sequence of Oh, Internat. Math. Res. Notices (2019) no. 8, pp. 2483-2518 | DOI | MR | Zbl
[Che96] Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl., Volume 30 (1996) no. 2, pp. 118-128 | DOI | Zbl
[Che02] Differential algebra of Legendrian links, Invent. Math., Volume 150 (2002) no. 3, pp. 441-483 | DOI | MR | Zbl
[CM18] Differential algebra of cubic planar graphs, Adv. Math., Volume 338 (2018), pp. 401-446 | DOI | MR | Zbl
[dR40] Sur les complexes avec automorphismes, Comment. Math. Helv., Volume 12 (1940), pp. 191-211 | DOI | MR | Zbl
[DR11] Knotted Legendrian surfaces with few Reeb chords, Algebraic Geom. Topol., Volume 11 (2011) no. 5, pp. 2903-2936 | DOI | MR | Zbl
[DWW03] A parametrized index theorem for the algebraic -theory Euler class, Acta Math., Volume 190 (2003) no. 1, pp. 1-104 | DOI | MR | Zbl
[EES07] Legendrian contact homology in , Trans. Amer. Math. Soc., Volume 359 (2007) no. 7, pp. 3301-3335 | DOI | MR | Zbl
[EG98] Lagrangian intersection theory: finite-dimensional approach, Geometry of differential equations (Amer. Math. Soc. Transl. Ser. 2), Volume 186, American Mathematical Society, Providence, RI, 1998, pp. 27-118 | DOI | MR | Zbl
[Eli98] Invariants in contact topology, Proceedings of the ICM, Vol. II (Berlin, 1998) (Doc. Math.), Deutsche Mathematiker-Vereinigung, Berlin, 1998, pp. 327-338 (Extra Vol. II) | Zbl
[EM12] The space of framed functions is contractible, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 81-109 | DOI | Zbl
[FI04] Invariants of Legendrian knots and decompositions of front diagrams, Moscow Math. J., Volume 4 (2004) no. 3, p. 707-717, 783 | DOI | MR | Zbl
[FR11] Generating families and Legendrian contact homology in the standard contact space, J. Topology, Volume 4 (2011) no. 1, pp. 190-226 | DOI | MR | Zbl
[Fra35] Über die Torsion einer Überdeckung, J. reine angew. Math., Volume 173 (1935), pp. 245-254 | DOI | Zbl
[Fuk97] The symplectic -cobordism conjecture: a summary, Geometry and physics (Aarhus, 1995) (Lecture Notes in Pure and Appl. Math.), Volume 184, Dekker, New York, 1997, pp. 209-219 | MR | Zbl
[GKS12] Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J., Volume 161 (2012) no. 2, pp. 201-245 | DOI | MR | Zbl
[Hen11] Connections between Floer-type invariants and Morse-type invariants of Legendrian knots, Pacific J. Math., Volume 249 (2011) no. 1, pp. 77-133 | DOI | MR | Zbl
[HI19] A counterexample to the -dimension conjecture, 2019 | arXiv
[HL99] Circle-valued Morse theory and Reidemeister torsion, Geom. Topol., Volume 3 (1999), pp. 369-396 | DOI | MR | Zbl
[HR15] Equivalence classes of augmentations and Morse complex sequences of Legendrian knots, Algebraic Geom. Topol., Volume 15 (2015) no. 6, pp. 3323-3353 | DOI | MR | Zbl
[HW73] Pseudo-isotopies of compact manifolds, Astérisque, 6, Société Mathématique de France, Paris, 1973 | Numdam | MR | Zbl
[Igu] The generalized Grassmann invariant (preprint)
[Igu79] The obstruction for pseudoisotopy, Ph. D. Thesis, Princeton University (1979) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7913362 | MR
[Igu84] What happens to Hatcher and Wagoner’s formulas for when the first Postnikov invariant of is nontrivial?, Algebraic -theory, number theory, geometry and analysis (Bielefeld, 1982) (Lect. Notes in Math.), Volume 1046, Springer, Berlin, 1984, pp. 104-172 | DOI | MR | Zbl
[Igu87] The space of framed functions, Trans. Amer. Math. Soc., Volume 301 (1987) no. 2, pp. 431-477 | DOI | MR | Zbl
[Igu88] The stability theorem for smooth pseudoisotopies, -Theory, Volume 2 (1988) no. 1-2, pp. 1-355 | DOI | MR | Zbl
[Igu93] The Borel regulator map on pictures. I. A dilogarithm formula, -Theory, Volume 7 (1993) no. 3, pp. 201-224 | DOI | MR | Zbl
[Igu02] Higher Franz-Reidemeister torsion, AMS/IP Studies in Advanced Math., 31, American Mathematical Society, Providence, RI, 2002 | DOI | MR | Zbl
[Igu04] Combinatorial Miller-Morita-Mumford classes and Witten cycles, Algebraic Geom. Topol., Volume 4 (2004), pp. 473-520 | DOI | MR | Zbl
[Igu05] Higher complex torsion and the framing principle, Mem. Amer. Math. Soc., 177, no. 835, American Mathematical Society, Providence, RI, 2005 | DOI | Zbl
[IK93] The Borel regulator map on pictures. II. An example from Morse theory, -Theory, Volume 7 (1993) no. 3, pp. 225-267 | DOI | MR | Zbl
[Jek89] A simplicial formula and bound for the Euler class, Israel J. Math., Volume 66 (1989) no. 1-3, pp. 247-259 | DOI | MR | Zbl
[JKS16] A categorification of Grassmannian cluster algebras, Proc. London Math. Soc. (3), Volume 113 (2016) no. 2, pp. 185-212 | DOI | MR | Zbl
[JT06] Generating family invariants for Legendrian links of unknots, Algebraic Geom. Topol., Volume 6 (2006), pp. 895-933 | DOI | MR | Zbl
[Kle89] The cell complex construction and higher R-torsion for bundles with framed Morse functions, Ph. D. Thesis, Brandeis University (1989) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8922192 | MR
[Kon92] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., Volume 147 (1992) no. 1, pp. 1-23 http://projecteuclid.org/euclid.cmp/1104250524 | DOI | MR | Zbl
[Kra18] Generating families for Lagrangians in and the Hatcher-Waldhausen map, 2018 | arXiv
[Lau12] Transversalité, courants et théorie de Morse, Éditions de l’École polytechnique, Palaiseau, 2012 | Zbl
[Lee05a] Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom., Volume 3 (2005) no. 2, pp. 221-311 http://projecteuclid.org/euclid.jsg/1144947796 | DOI | MR | Zbl
[Lee05b] Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. II, J. Symplectic Geom., Volume 3 (2005) no. 3, pp. 385-480 http://projecteuclid.org/euclid.jsg/1144954879 | DOI | MR | Zbl
[LS85] Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math., Volume 82 (1985) no. 2, pp. 349-357 | DOI | Zbl
[Maz63] Relative neighborhoods and the theorems of Smale, Ann. of Math. (2), Volume 77 (1963), pp. 232-249 | DOI | MR | Zbl
[Mil61] Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2), Volume 74 (1961), pp. 575-590 | DOI | MR | Zbl
[Mil66] Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[MT96] Milnor torsion, Math. Res. Lett., Volume 3 (1996) no. 5, pp. 661-674 | DOI | MR | Zbl
[Mur19] Loose Legendrian embeddings in high dimensional contact manifolds, 2019 | arXiv
[Rei35] Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg, Volume 11 (1935) no. 1, pp. 102-109 | DOI | MR | Zbl
[RS71] -torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | DOI | MR | Zbl
[RS18] Generating families and augmentations for Legendrian surfaces, Algebraic Geom. Topol., Volume 18 (2018) no. 3, pp. 1675-1731 | DOI | MR | Zbl
[Sab05] Augmentations and rulings of Legendrian knots, Internat. Math. Res. Notices (2005) no. 19, pp. 1157-1180 | DOI | MR | Zbl
[Sab06] Duality for Legendrian contact homology, Geom. Topol., Volume 10 (2006), pp. 2351-2381 | DOI | MR | Zbl
[Sik86] Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 3, pp. 119-122 | MR | Zbl
[Sma61] Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2), Volume 74 (1961), pp. 391-406 | DOI | MR | Zbl
[SS16] Families of Legendrian submanifolds via generating families, Quantum Topol., Volume 7 (2016) no. 4, pp. 639-668 | DOI | MR | Zbl
[STWZ19] Cluster varieties from Legendrian knots, Duke Math. J., Volume 168 (2019) no. 15, pp. 2801-2871 | DOI | MR | Zbl
[STZ17] Legendrian knots and constructible sheaves, Invent. Math., Volume 207 (2017) no. 3, pp. 1031-1133 | DOI | MR | Zbl
[Sul02] -theoretic invariants for Floer homology, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 810-872 | DOI | MR | Zbl
[Suá17] Exact Lagrangian cobordism and pseudo-isotopy, Internat. J. Math., Volume 28 (2017) no. 8, p. 1750059, 35 | DOI | MR | Zbl
[Tra01] Generating function polynomials for Legendrian links, Geom. Topol., Volume 5 (2001), pp. 719-760 | DOI | MR | Zbl
[Tur86] Reidemeister torsion in knot theory, Uspehi Mat. Nauk, Volume 41 (1986) no. 1(247), p. 97-147, 240 | MR | Zbl
[Tur98] A combinatorial formulation for the Seiberg-Witten invariants of -manifolds, Math. Res. Lett., Volume 5 (1998) no. 5, pp. 583-598 | DOI | MR | Zbl
[Vit92] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl
[Wag78] Diffeomorphisms, , and analytic torsion, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 (Proc. Sympos. Pure Math.), Volume XXXII, American Mathematical Society, Providence, RI (1978), pp. 23-33 | Zbl
[Wal82] Algebraic -theory of spaces, a manifold approach, Current trends in algebraic topology, Part 1 (London, Ont., 1981) (CMS Conf. Proc.), Volume 2, American Mathematical Society, Providence, RI, 1982, pp. 141-184 | MR | Zbl
[Whi50] Simple homotopy types, Amer. J. Math., Volume 72 (1950), pp. 1-57 | DOI | MR | Zbl
Cité par Sources :