A Legendrian Turaev torsion via generating families
[Torsion de Turaev legendrienne des fonctions génératrices]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 57-119.

Nous introduisons un invariant des sous-variétés legendriennes construit à l’aide de fonctions génératrices. Cet invariant est défini pour une certaine classe de sous-variétés legendriennes, que nous appelons de type d’Euler, dans un espace de 1-jets. Nous utilisons cet invariant pour étudier les mailles legendriennes : une famille de sous-variétés legendriennes de type d’Euler dont le motif d’entrelac est déterminé par un graphe bicolore et trivalent qui est muni d’un ordre cyclique des arêtes concourantes en un même sommet. La torsion de Turaev d’une maille legendrienne est reliée à une certaine monodromie de glissement d’anses, que nous calculons en terme de la combinatoire du graphe. Comme application, nous exhibons, dans l’espace des 1-jets de toute surface fermée orientable, des paires d’entrelacs legendriens qui sont formellement équivalents, ne peuvent être distingués par aucun invariant legendrien naturel, et pourtant ne sont pas isotopes parmi les variétés legendriennes. Ces exemples sont apparus sous une forme différente dans les travaux du second auteur avec J. Klein sur des dessins pour K 3 et sur la torsion de Reidemeister supérieure de fibrés en cercles.

We introduce a Legendrian invariant built out of the Turaev torsion of generating families. This invariant is defined for a certain class of Legendrian submanifolds of 1-jet spaces, which we call of Euler type. We use our invariant to study mesh Legendrians: a family of 2-dimensional Euler type Legendrian links whose linking pattern is determined by a bicolored trivalent ribbon graph. The Turaev torsion of mesh Legendrians is related to a certain monodromy of handle slides, which we compute in terms of the combinatorics of the graph. As an application, we exhibit pairs of Legendrian links in the 1-jet space of any orientable closed surface which are formally equivalent, cannot be distinguished by any natural Legendrian invariant, yet are not Legendrian isotopic. These examples appeared in a different guise in the work of the second author with J. Klein on pictures for K 3 and the higher Reidemeister torsion of circle bundles.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.141
Classification : 57R17, 19J10
Keywords: Legendrians, Turaev torsion, K-theory
Mot clés : Legendriennes, torsion de Turaev, K-théorie
Álvarez-Gavela, Daniel 1 ; Igusa, Kiyoshi 2

1 Department of Mathematics, Princeton University Princeton, NJ 086540, USA
2 Department of Mathematics, Brandeis University PO Box 9110, Waltham, MA 02454-9110, USA
@article{JEP_2021__8__57_0,
     author = {\'Alvarez-Gavela, Daniel and Igusa, Kiyoshi},
     title = {A {Legendrian} {Turaev} torsion via generating~families},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {57--119},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.141},
     mrnumber = {4180260},
     zbl = {07282222},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.141/}
}
TY  - JOUR
AU  - Álvarez-Gavela, Daniel
AU  - Igusa, Kiyoshi
TI  - A Legendrian Turaev torsion via generating families
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 57
EP  - 119
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.141/
DO  - 10.5802/jep.141
LA  - en
ID  - JEP_2021__8__57_0
ER  - 
%0 Journal Article
%A Álvarez-Gavela, Daniel
%A Igusa, Kiyoshi
%T A Legendrian Turaev torsion via generating families
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 57-119
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.141/
%R 10.5802/jep.141
%G en
%F JEP_2021__8__57_0
Álvarez-Gavela, Daniel; Igusa, Kiyoshi. A Legendrian Turaev torsion via generating families. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 57-119. doi : 10.5802/jep.141. http://www.numdam.org/articles/10.5802/jep.141/

[AGZV12] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012 | Zbl

[AK18] Abouzaid, Mohammed; Kragh, Thomas Simple homotopy equivalence of nearby Lagrangians, Acta Math., Volume 220 (2018) no. 2, pp. 207-237 | DOI | MR | Zbl

[Bar64] Barden, D. On the structure and classification of differential manifolds, Ph. D. Thesis, Cambridge University (1964)

[BFG + 18] Baur, Karin; Faber, Eleonore; Gratz, Sira; Serhiyenko, Khrystyna; Todorov, Gordana Friezes satisfying higher SL k -determinants, 2018 (to appear in Algebra & Number Theory) | arXiv

[BL95] Bismut, Jean-Michel; Lott, John Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363 | DOI | MR | Zbl

[Cer70] Cerf, Jean La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. Inst. Hautes Études Sci., Volume 39 (1970), pp. 5-173 | Numdam | MR | Zbl

[Cha84] Chaperon, Marc Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math., Volume 298 (1984) no. 13, pp. 293-296 | Zbl

[Cha19] Charette, François Quantum Reidemeister torsion, open Gromov-Witten invariants and a spectral sequence of Oh, Internat. Math. Res. Notices (2019) no. 8, pp. 2483-2518 | DOI | MR | Zbl

[Che96] Chekanov, Yuri V. Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl., Volume 30 (1996) no. 2, pp. 118-128 | DOI | Zbl

[Che02] Chekanov, Yuri V. Differential algebra of Legendrian links, Invent. Math., Volume 150 (2002) no. 3, pp. 441-483 | DOI | MR | Zbl

[CM18] Casals, Roger; Murphy, Emmy Differential algebra of cubic planar graphs, Adv. Math., Volume 338 (2018), pp. 401-446 | DOI | MR | Zbl

[dR40] de Rham, Georges Sur les complexes avec automorphismes, Comment. Math. Helv., Volume 12 (1940), pp. 191-211 | DOI | MR | Zbl

[DR11] Dimitroglou Rizell, Georgios Knotted Legendrian surfaces with few Reeb chords, Algebraic Geom. Topol., Volume 11 (2011) no. 5, pp. 2903-2936 | DOI | MR | Zbl

[DWW03] Dwyer, W.; Weiss, M.; Williams, B. A parametrized index theorem for the algebraic K-theory Euler class, Acta Math., Volume 190 (2003) no. 1, pp. 1-104 | DOI | MR | Zbl

[EES07] Ekholm, Tobias; Etnyre, John; Sullivan, Michael G. Legendrian contact homology in P×, Trans. Amer. Math. Soc., Volume 359 (2007) no. 7, pp. 3301-3335 | DOI | MR | Zbl

[EG98] Eliashberg, Yakov M.; Gromov, Misha Lagrangian intersection theory: finite-dimensional approach, Geometry of differential equations (Amer. Math. Soc. Transl. Ser. 2), Volume 186, American Mathematical Society, Providence, RI, 1998, pp. 27-118 | DOI | MR | Zbl

[Eli98] Eliashberg, Yakov M. Invariants in contact topology, Proceedings of the ICM, Vol. II (Berlin, 1998) (Doc. Math.), Deutsche Mathematiker-Vereinigung, Berlin, 1998, pp. 327-338 (Extra Vol. II) | Zbl

[EM12] Eliashberg, Yakov M.; Mishachev, N. M. The space of framed functions is contractible, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 81-109 | DOI | Zbl

[FI04] Fuchs, Dmitry; Ishkhanov, Tigran Invariants of Legendrian knots and decompositions of front diagrams, Moscow Math. J., Volume 4 (2004) no. 3, p. 707-717, 783 | DOI | MR | Zbl

[FR11] Fuchs, Dmitry; Rutherford, Dan Generating families and Legendrian contact homology in the standard contact space, J. Topology, Volume 4 (2011) no. 1, pp. 190-226 | DOI | MR | Zbl

[Fra35] Franz, Wolfgang Über die Torsion einer Überdeckung, J. reine angew. Math., Volume 173 (1935), pp. 245-254 | DOI | Zbl

[Fuk97] Fukaya, Kenji The symplectic s-cobordism conjecture: a summary, Geometry and physics (Aarhus, 1995) (Lecture Notes in Pure and Appl. Math.), Volume 184, Dekker, New York, 1997, pp. 209-219 | MR | Zbl

[GKS12] Guillermou, Stéphane; Kashiwara, Masaki; Schapira, Pierre Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems, Duke Math. J., Volume 161 (2012) no. 2, pp. 201-245 | DOI | MR | Zbl

[Hen11] Henry, Michael B. Connections between Floer-type invariants and Morse-type invariants of Legendrian knots, Pacific J. Math., Volume 249 (2011) no. 1, pp. 77-133 | DOI | MR | Zbl

[HI19] Hanson, Eric J.; Igusa, Kiyoshi A counterexample to the ϕ-dimension conjecture, 2019 | arXiv

[HL99] Hutchings, Michael; Lee, Yi-Jen Circle-valued Morse theory and Reidemeister torsion, Geom. Topol., Volume 3 (1999), pp. 369-396 | DOI | MR | Zbl

[HR15] Henry, Michael B.; Rutherford, Dan Equivalence classes of augmentations and Morse complex sequences of Legendrian knots, Algebraic Geom. Topol., Volume 15 (2015) no. 6, pp. 3323-3353 | DOI | MR | Zbl

[HW73] Hatcher, Allen; Wagoner, John Pseudo-isotopies of compact manifolds, Astérisque, 6, Société Mathématique de France, Paris, 1973 | Numdam | MR | Zbl

[Igu] Igusa, Kiyoshi The generalized Grassmann invariant (preprint)

[Igu79] Igusa, Kiyoshi The Wh 3 (π) obstruction for pseudoisotopy, Ph. D. Thesis, Princeton University (1979) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7913362 | MR

[Igu84] Igusa, Kiyoshi What happens to Hatcher and Wagoner’s formulas for π 0 C(M) when the first Postnikov invariant of M is nontrivial?, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982) (Lect. Notes in Math.), Volume 1046, Springer, Berlin, 1984, pp. 104-172 | DOI | MR | Zbl

[Igu87] Igusa, Kiyoshi The space of framed functions, Trans. Amer. Math. Soc., Volume 301 (1987) no. 2, pp. 431-477 | DOI | MR | Zbl

[Igu88] Igusa, Kiyoshi The stability theorem for smooth pseudoisotopies, K-Theory, Volume 2 (1988) no. 1-2, pp. 1-355 | DOI | MR | Zbl

[Igu93] Igusa, Kiyoshi The Borel regulator map on pictures. I. A dilogarithm formula, K-Theory, Volume 7 (1993) no. 3, pp. 201-224 | DOI | MR | Zbl

[Igu02] Igusa, Kiyoshi Higher Franz-Reidemeister torsion, AMS/IP Studies in Advanced Math., 31, American Mathematical Society, Providence, RI, 2002 | DOI | MR | Zbl

[Igu04] Igusa, Kiyoshi Combinatorial Miller-Morita-Mumford classes and Witten cycles, Algebraic Geom. Topol., Volume 4 (2004), pp. 473-520 | DOI | MR | Zbl

[Igu05] Igusa, Kiyoshi Higher complex torsion and the framing principle, Mem. Amer. Math. Soc., 177, no. 835, American Mathematical Society, Providence, RI, 2005 | DOI | Zbl

[IK93] Igusa, Kiyoshi; Klein, John The Borel regulator map on pictures. II. An example from Morse theory, K-Theory, Volume 7 (1993) no. 3, pp. 225-267 | DOI | MR | Zbl

[Jek89] Jekel, Solomon M. A simplicial formula and bound for the Euler class, Israel J. Math., Volume 66 (1989) no. 1-3, pp. 247-259 | DOI | MR | Zbl

[JKS16] Jensen, Bernt Tore; King, Alastair D.; Su, Xiuping A categorification of Grassmannian cluster algebras, Proc. London Math. Soc. (3), Volume 113 (2016) no. 2, pp. 185-212 | DOI | MR | Zbl

[JT06] Jordan, Jill; Traynor, Lisa Generating family invariants for Legendrian links of unknots, Algebraic Geom. Topol., Volume 6 (2006), pp. 895-933 | DOI | MR | Zbl

[Kle89] Klein, John Robert The cell complex construction and higher R-torsion for bundles with framed Morse functions, Ph. D. Thesis, Brandeis University (1989) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:8922192 | MR

[Kon92] Kontsevich, Maxim Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., Volume 147 (1992) no. 1, pp. 1-23 http://projecteuclid.org/euclid.cmp/1104250524 | DOI | MR | Zbl

[Kra18] Kragh, Thomas Generating families for Lagrangians in 2n and the Hatcher-Waldhausen map, 2018 | arXiv

[Lau12] Laudenbach, François Transversalité, courants et théorie de Morse, Éditions de l’École polytechnique, Palaiseau, 2012 | Zbl

[Lee05a] Lee, Yi-Jen Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom., Volume 3 (2005) no. 2, pp. 221-311 http://projecteuclid.org/euclid.jsg/1144947796 | DOI | MR | Zbl

[Lee05b] Lee, Yi-Jen Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. II, J. Symplectic Geom., Volume 3 (2005) no. 3, pp. 385-480 http://projecteuclid.org/euclid.jsg/1144954879 | DOI | MR | Zbl

[LS85] Laudenbach, François; Sikorav, Jean-Claude Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math., Volume 82 (1985) no. 2, pp. 349-357 | DOI | Zbl

[Maz63] Mazur, Barry Relative neighborhoods and the theorems of Smale, Ann. of Math. (2), Volume 77 (1963), pp. 232-249 | DOI | MR | Zbl

[Mil61] Milnor, John Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2), Volume 74 (1961), pp. 575-590 | DOI | MR | Zbl

[Mil66] Milnor, John Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl

[MT96] Meng, Guowu; Taubes, Clifford Henry SW ̲= Milnor torsion, Math. Res. Lett., Volume 3 (1996) no. 5, pp. 661-674 | DOI | MR | Zbl

[Mur19] Murphy, Emmy Loose Legendrian embeddings in high dimensional contact manifolds, 2019 | arXiv

[Rei35] Reidemeister, Kurt Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg, Volume 11 (1935) no. 1, pp. 102-109 | DOI | MR | Zbl

[RS71] Ray, D. B.; Singer, I. M. R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | DOI | MR | Zbl

[RS18] Rutherford, Dan; Sullivan, Michael G. Generating families and augmentations for Legendrian surfaces, Algebraic Geom. Topol., Volume 18 (2018) no. 3, pp. 1675-1731 | DOI | MR | Zbl

[Sab05] Sabloff, Joshua M. Augmentations and rulings of Legendrian knots, Internat. Math. Res. Notices (2005) no. 19, pp. 1157-1180 | DOI | MR | Zbl

[Sab06] Sabloff, Joshua M. Duality for Legendrian contact homology, Geom. Topol., Volume 10 (2006), pp. 2351-2381 | DOI | MR | Zbl

[Sik86] Sikorav, Jean-Claude Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C. R. Acad. Sci. Paris Sér. I Math., Volume 302 (1986) no. 3, pp. 119-122 | MR | Zbl

[Sma61] Smale, Stephen Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2), Volume 74 (1961), pp. 391-406 | DOI | MR | Zbl

[SS16] Sabloff, Joshua M.; Sullivan, Michael G. Families of Legendrian submanifolds via generating families, Quantum Topol., Volume 7 (2016) no. 4, pp. 639-668 | DOI | MR | Zbl

[STWZ19] Shende, Vivek; Treumann, David; Williams, Harold; Zaslow, Eric Cluster varieties from Legendrian knots, Duke Math. J., Volume 168 (2019) no. 15, pp. 2801-2871 | DOI | MR | Zbl

[STZ17] Shende, Vivek; Treumann, David; Zaslow, Eric Legendrian knots and constructible sheaves, Invent. Math., Volume 207 (2017) no. 3, pp. 1031-1133 | DOI | MR | Zbl

[Sul02] Sullivan, Michael G. K-theoretic invariants for Floer homology, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 810-872 | DOI | MR | Zbl

[Suá17] Suárez, Lara Simone Exact Lagrangian cobordism and pseudo-isotopy, Internat. J. Math., Volume 28 (2017) no. 8, p. 1750059, 35 | DOI | MR | Zbl

[Tra01] Traynor, Lisa Generating function polynomials for Legendrian links, Geom. Topol., Volume 5 (2001), pp. 719-760 | DOI | MR | Zbl

[Tur86] Turaev, Vladimir G. Reidemeister torsion in knot theory, Uspehi Mat. Nauk, Volume 41 (1986) no. 1(247), p. 97-147, 240 | MR | Zbl

[Tur98] Turaev, Vladimir G. A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds, Math. Res. Lett., Volume 5 (1998) no. 5, pp. 583-598 | DOI | MR | Zbl

[Vit92] Viterbo, Claude Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl

[Wag78] Wagoner, J. B. Diffeomorphisms, K 2 , and analytic torsion, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 (Proc. Sympos. Pure Math.), Volume XXXII, American Mathematical Society, Providence, RI (1978), pp. 23-33 | Zbl

[Wal82] Waldhausen, Friedhelm Algebraic K-theory of spaces, a manifold approach, Current trends in algebraic topology, Part 1 (London, Ont., 1981) (CMS Conf. Proc.), Volume 2, American Mathematical Society, Providence, RI, 1982, pp. 141-184 | MR | Zbl

[Whi50] Whitehead, J. H. C. Simple homotopy types, Amer. J. Math., Volume 72 (1950), pp. 1-57 | DOI | MR | Zbl

Cité par Sources :