Homological support of big objects in tensor-triangulated categories
[Support homologique des grands objets dans les catégories triangulées tensorielles]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1069-1088.

À l’aide des corps résiduels homologiques, nous définissons le support des grands objets dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit tensoriel.

Using homological residue fields, we define supports for big objects in tensor-triangulated categories and prove a tensor-product formula.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.135
Classification : 18D99, 20J05, 55U35
Keywords: Tensor-triangular geometry, homological residue field, big support
Mot clés : Géométrie triangulée-tensorielle, corps résiduels homologiques, support
Balmer, Paul 1

1 Mathematics Department, UCLA, Los Angeles, CA 90095-1555, USA
@article{JEP_2020__7__1069_0,
     author = {Balmer, Paul},
     title = {Homological support of big objects in~tensor-triangulated categories},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1069--1088},
     publisher = {Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.135},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.135/}
}
TY  - JOUR
AU  - Balmer, Paul
TI  - Homological support of big objects in tensor-triangulated categories
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 1069
EP  - 1088
VL  - 7
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.135/
DO  - 10.5802/jep.135
LA  - en
ID  - JEP_2020__7__1069_0
ER  - 
%0 Journal Article
%A Balmer, Paul
%T Homological support of big objects in tensor-triangulated categories
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 1069-1088
%V 7
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.135/
%R 10.5802/jep.135
%G en
%F JEP_2020__7__1069_0
Balmer, Paul. Homological support of big objects in tensor-triangulated categories. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1069-1088. doi : 10.5802/jep.135. http://www.numdam.org/articles/10.5802/jep.135/

[Bal05] Balmer, Paul The spectrum of prime ideals in tensor triangulated categories, J. reine angew. Math., Volume 588 (2005), pp. 149-168 | DOI | MR | Zbl

[Bal18] Balmer, Paul On the surjectivity of the map of spectra associated to a tensor-triangulated functor, Bull. London Math. Soc., Volume 50 (2018) no. 3, pp. 487-495 | DOI | MR | Zbl

[Bal19] Balmer, Paul A guide to tensor-triangular classification, Handbook of homotopy theory (Miller, H., ed.), Chapman and Hall/CRC, 2019 (Available on the author’s web page)

[Bal20] Balmer, Paul Nilpotence theorems via homological residue fields, Tunis. J. Math., Volume 2 (2020) no. 2, pp. 359-378 | DOI | MR | Zbl

[BC20] Balmer, Paul; Cameron, James Computing homological residue fields in algebra and topology, 2020 | arXiv

[BDS16] Balmer, Paul; Dell’Ambrogio, Ivo; Sanders, Beren Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compositio Math., Volume 152 (2016) no. 8, pp. 1740-1776 | DOI | Zbl

[BF11] Balmer, Paul; Favi, Giordano Generalized tensor idempotents and the telescope conjecture, Proc. London Math. Soc. (3), Volume 102 (2011) no. 6, pp. 1161-1185 | DOI | MR | Zbl

[BIK08] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Local cohomology and support for triangulated categories, Ann. Sci. École Norm. Sup. (4), Volume 41 (2008) no. 4, pp. 573-619 | DOI | Numdam | MR | Zbl

[BIK11a] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Stratifying modular representations of finite groups, Ann. of Math. (2), Volume 174 (2011) no. 3, pp. 1643-1684 | DOI | MR | Zbl

[BIK11b] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Stratifying triangulated categories, J. Topology, Volume 4 (2011) no. 3, pp. 641-666 | DOI | MR | Zbl

[BIK12a] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Colocalizing subcategories and cosupport, J. reine angew. Math., Volume 673 (2012), pp. 161-207 | DOI | MR | Zbl

[BIK12b] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Representations of finite groups: local cohomology and support, Oberwolfach Seminars, 43, Birkhäuser/Springer, Basel, 2012 | DOI | MR | Zbl

[BIK13] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning Module categories for group algebras over commutative rings, J. K-Theory, Volume 11 (2013) no. 2, pp. 297-329 (With an appendix by Greg Stevenson) | DOI | MR | Zbl

[BKS19] Balmer, Paul; Krause, Henning; Stevenson, Greg Tensor-triangular fields: ruminations, Selecta Math. (N.S.), Volume 25 (2019) no. 1, 13, 36 pages | DOI | MR | Zbl

[BKS20] Balmer, Paul; Krause, Henning; Stevenson, Greg The frame of smashing tensor-ideals, Math. Proc. Cambridge Philos. Soc., Volume 168 (2020) no. 2, pp. 323-343 | DOI | MR | Zbl

[DP08] Dwyer, W. G.; Palmieri, J. H. The Bousfield lattice for truncated polynomial algebras, Homology Homotopy Appl., Volume 10 (2008) no. 1, pp. 413-436 | DOI | MR | Zbl

[HPS97] Hovey, Mark; Palmieri, John H.; Strickland, Neil P. Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128, no. 610, American Mathematical Society, Providence, RI, 1997 | DOI | Zbl

[HS99] Hovey, Mark; Strickland, Neil P. Morava K-theories and localisation, Mem. Amer. Math. Soc., 139, no. 666, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl

[Kra00] Krause, Henning Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., Volume 139 (2000) no. 1, pp. 99-133 | DOI | MR | Zbl

[Lur17] Lurie, Jacob Higher algebra (2017) (Online at http://www.math.ias.edu/~lurie/)

[Nee96] Neeman, Amnon The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | DOI | MR | Zbl

[Nee00] Neeman, Amnon Oddball Bousfield classes, Topology, Volume 39 (2000) no. 5, pp. 931-935 | DOI | MR | Zbl

[Nee01] Neeman, Amnon Triangulated categories, Annals of Math. Studies, 148, Princeton University Press, Princeton, NJ, 2001 | DOI | MR | Zbl

[Ste13] Stevenson, Greg Support theory via actions of tensor triangulated categories, J. reine angew. Math., Volume 681 (2013), pp. 219-254 | DOI | MR | Zbl

Cité par Sources :