Nous étudions le comportement asymptotique des solutions de l’équation de Vlasov en présence d’un fort champ magnétique externe. En particulier, nous justifions rigoureusement l’obtention de l’approximation centre-guide dans un cadre général en dimension pour un champ magnétique inhomogène. Les corrections d’ordre sont également décrites et justifiées, y compris le terme , les gradients du champ magnétique et les effets de courbure. En outre, nous traitons le comportement en temps long pour deux exemples spécifiques, le cas bidimensionnel en coordonnées cartésiennes (pour ses vertus pédagogiques) et une géométrie toroïdale axi-symétrique. Notre approche est essentiellement basée sur des manipulations algébriques, plutôt que sur une structure variationnelle particulière.
We study the asymptotic behavior of solutions to the Vlasov equation in the presence of a strong external magnetic field. In particular we provide a mathematically rigorous derivation of the guiding-center approximation in the general three-dimensional setting under the action of large inhomogeneous magnetic fields. First order corrections are computed and justified as well, including electric cross field, magnetic gradient and magnetic curvature drifts. We also treat long time behaviors on two specific examples, the two-dimensional case in cartesian coordinates and a toroidal axi-symmetric geometry, the former for expository purposes. Algebraic manipulations that underlie concrete computations make the most of the linearity of the stiffest part of the system of characteristics instead of relying on any particular variational structure. At last, we analyze a smoothed Vlasov-Poisson system, thus showing how our arguments may be extended to deal with the nonlinearity arising from self-consistent fields.
Accepté le :
Publié le :
Keywords: Vlasov equation, guiding center approximation, gyrokinetics, asymptotic analysis
Mot clés : Analyse asymptotique, équation de Vlasov, approximation centre-guide, gyro-cinétique
@article{JEP_2020__7__1009_0, author = {Filbet, Francis and Rodrigues, L. Miguel}, title = {Asymptotics of the three-dimensional {Vlasov} equation in the large magnetic field limit}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1009--1067}, publisher = {Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.134}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.134/} }
TY - JOUR AU - Filbet, Francis AU - Rodrigues, L. Miguel TI - Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1009 EP - 1067 VL - 7 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.134/ DO - 10.5802/jep.134 LA - en ID - JEP_2020__7__1009_0 ER -
%0 Journal Article %A Filbet, Francis %A Rodrigues, L. Miguel %T Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1009-1067 %V 7 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.134/ %R 10.5802/jep.134 %G en %F JEP_2020__7__1009_0
Filbet, Francis; Rodrigues, L. Miguel. Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1009-1067. doi : 10.5802/jep.134. http://www.numdam.org/articles/10.5802/jep.134/
[1] Fundamentals of plasma physics, Cambridge University Press, 2008
[2] Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field, Nonlinearity, Volume 7 (1994) no. 1, pp. 281-303 | DOI | MR | Zbl
[3] Asymptotic methods in the theory of non-linear oscillations, International Monographs on Advanced Math. and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961
[4] Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, Multiscale Model. Simul., Volume 8 (2010) no. 5, pp. 1923-1957 | DOI | MR
[5] Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, Volume 249 (2010) no. 7, pp. 1620-1663 | DOI | MR | Zbl
[6] Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. Straight magnetic field lines, SIAM J. Math. Anal., Volume 51 (2019) no. 3, pp. 2713-2747 | DOI | MR | Zbl
[7] Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., Volume 79 (2007) no. 2, pp. 421-468 | DOI | MR | Zbl
[8] Introduction to plasma physics and controlled fusion, Springer, 2016
[9] Anomalous transport, J. Differential Equations, Volume 262 (2017) no. 3, pp. 2987-3033 | DOI | MR | Zbl
[10] On the asymptotic limit of the three dimensional Vlasov–Poisson system for large magnetic field: formal derivation, J. Statist. Phys., Volume 165 (2016) no. 4, pp. 765-784 | DOI | MR | Zbl
[11] Gyrokinetic theory for particle transport in fusion plasmas, Ph. D. Thesis, Università di Roma Tre (2017) | arXiv
[12] Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field, SIAM J. Numer. Anal., Volume 54 (2016) no. 2, pp. 1120-1146 | DOI | MR | Zbl
[13] Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., Volume 55 (2017) no. 5, pp. 2416-2443 | DOI | MR | Zbl
[14] Plasma physics and fusion energy, Cambridge University Press, 2008
[15] On the geometrical gyro-kinetic theory, Kinet. and Relat. Mod., Volume 7 (2014) no. 4, pp. 621-659 | DOI | MR | Zbl
[16] Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., Volume 18 (1998) no. 3-4, pp. 193-213 | MR | Zbl
[17] Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 4, pp. 539-553 | DOI | MR
[18] Gyrokinetic simulations of turbulent transport, Nuclear Fusion, Volume 50 (2010), p. 043002 | DOI
[19] The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), Volume 78 (1999) no. 8, pp. 791-817 | DOI | MR | Zbl
[20] Contribution à l’étude mathématique des plasmas fortement magnétisés, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI (2011) | theses.fr
[21] Plasma confinement, Dover Publications, 2003
[22] On massless electron limit for a multispecies kinetic system with external magnetic field, J. Differential Equations, Volume 260 (2016) no. 11, pp. 7861-7891 | DOI | MR | Zbl
[23] Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées, Ph. D. Thesis, Université Claude Bernard Lyon 1 (2017) | theses.fr
[24] Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations, Kinet. and Relat. Mod., Volume 12 (2019) no. 3, p. 593–636 | DOI | MR | Zbl
[25] The gyrokinetic description of microturbulence in magnetized plasmas, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 175-201 | DOI | MR | Zbl
[26] Gyrokinetic approach in particle simulation, Phys. Fluids, Volume 26 (1983) no. 2, pp. 556-562 | DOI | Zbl
[27] On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoamericana, Volume 35 (2019) no. 1, pp. 23-100 | DOI | MR | Zbl
[28] A guiding center Hamiltonian: A new approach, J. Math. Phys., Volume 20 (1979), pp. 2445-2458 | DOI | MR | Zbl
[29] Hamiltonian formulation of guiding center motion, Phys. Fluids, Volume 24 (1981), pp. 1730-1749 | DOI | MR | Zbl
[30] Variational principles of guiding center motion, J. Plasma Physics, Volume 29 (1983), pp. 111-124 | DOI
[31] Étude mathématique et numérique d’un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d’un plasma de Tokamak, Ph. D. Thesis, Université de Strasbourg (2013) | theses.fr
[32] On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system, 2016 | arXiv
[33] Plasma physics and controlled nuclear fusion, Springer Series on Atomic, Optical, and Plasma Physics, 38, Springer-Verlag, Berlin-Heidelberg, 2006 | Zbl
[34] Plasma physics: An introduction to laboratory, space, and fusion plasmas, Springer, Berlin, Heidelberg, 2010 | Zbl
[35] Gyrokinetics from variational averaging: Existence and error bounds, J. Math. Phys., Volume 59 (2018) no. 8, p. 082702, 34 | DOI | MR | Zbl
[36] Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl. (9), Volume 81 (2002) no. 4, pp. 379-399 | DOI | MR | Zbl
[37] Averaging methods in nonlinear dynamical systems, Applied Math. Sciences, 59, Springer, New York, 2007 | MR | Zbl
[38] Gyrokinetic field theory as a gauge transform or: gyrokinetic theory without Lie transforms, 2017 | arXiv
[39] Vlasov simulations of beams with a moving grid, Comput. Phys. Comm., Volume 164 (2004) no. 1-3, pp. 390-395 | DOI
Cité par Sources :