Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit
[Étude asymptotique de l’équation de Vlasov en dimension 3 pour un champ magnétique externe intense]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1009-1067.

Nous étudions le comportement asymptotique des solutions de l’équation de Vlasov en présence d’un fort champ magnétique externe. En particulier, nous justifions rigoureusement l’obtention de l’approximation centre-guide dans un cadre général en dimension 3 pour un champ magnétique inhomogène. Les corrections d’ordre 1 sont également décrites et justifiées, y compris le terme E×B, les gradients du champ magnétique et les effets de courbure. En outre, nous traitons le comportement en temps long pour deux exemples spécifiques, le cas bidimensionnel en coordonnées cartésiennes (pour ses vertus pédagogiques) et une géométrie toroïdale axi-symétrique. Notre approche est essentiellement basée sur des manipulations algébriques, plutôt que sur une structure variationnelle particulière.

We study the asymptotic behavior of solutions to the Vlasov equation in the presence of a strong external magnetic field. In particular we provide a mathematically rigorous derivation of the guiding-center approximation in the general three-dimensional setting under the action of large inhomogeneous magnetic fields. First order corrections are computed and justified as well, including electric cross field, magnetic gradient and magnetic curvature drifts. We also treat long time behaviors on two specific examples, the two-dimensional case in cartesian coordinates and a toroidal axi-symmetric geometry, the former for expository purposes. Algebraic manipulations that underlie concrete computations make the most of the linearity of the stiffest part of the system of characteristics instead of relying on any particular variational structure. At last, we analyze a smoothed Vlasov-Poisson system, thus showing how our arguments may be extended to deal with the nonlinearity arising from self-consistent fields.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.134
Classification : 35Q83, 78A35, 82D10, 35B40
Keywords: Vlasov equation, guiding center approximation, gyrokinetics, asymptotic analysis
Mot clés : Analyse asymptotique, équation de Vlasov, approximation centre-guide, gyro-cinétique
Filbet, Francis 1 ; Rodrigues, L. Miguel 2

1 Université de Toulouse III & IUF, UMR5219, Institut de Mathématiques de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex, France
2 Univ Rennes & IUF, CNRS, IRMAR - UMR 6625 F-35000 Rennes, France
@article{JEP_2020__7__1009_0,
     author = {Filbet, Francis and Rodrigues, L. Miguel},
     title = {Asymptotics of the three-dimensional {Vlasov} equation in the large magnetic field limit},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1009--1067},
     publisher = {Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.134},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.134/}
}
TY  - JOUR
AU  - Filbet, Francis
AU  - Rodrigues, L. Miguel
TI  - Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 1009
EP  - 1067
VL  - 7
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.134/
DO  - 10.5802/jep.134
LA  - en
ID  - JEP_2020__7__1009_0
ER  - 
%0 Journal Article
%A Filbet, Francis
%A Rodrigues, L. Miguel
%T Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 1009-1067
%V 7
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.134/
%R 10.5802/jep.134
%G en
%F JEP_2020__7__1009_0
Filbet, Francis; Rodrigues, L. Miguel. Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1009-1067. doi : 10.5802/jep.134. http://www.numdam.org/articles/10.5802/jep.134/

[1] Bellan, Paul Murray Fundamentals of plasma physics, Cambridge University Press, 2008

[2] Benettin, Giancarlo; Sempio, Paolo Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field, Nonlinearity, Volume 7 (1994) no. 1, pp. 281-303 | DOI | MR | Zbl

[3] Bogoliubov, N. N.; Mitropolsky, Y. A. Asymptotic methods in the theory of non-linear oscillations, International Monographs on Advanced Math. and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961

[4] Bostan, Mihai Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, Multiscale Model. Simul., Volume 8 (2010) no. 5, pp. 1923-1957 | DOI | MR

[5] Bostan, Mihai Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, Volume 249 (2010) no. 7, pp. 1620-1663 | DOI | MR | Zbl

[6] Bostan, Mihai Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. Straight magnetic field lines, SIAM J. Math. Anal., Volume 51 (2019) no. 3, pp. 2713-2747 | DOI | MR | Zbl

[7] Brizard, Alain J.; Hahm, Taik Soo Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., Volume 79 (2007) no. 2, pp. 421-468 | DOI | MR | Zbl

[8] Chen, F. F. Introduction to plasma physics and controlled fusion, Springer, 2016

[9] Cheverry, Christophe Anomalous transport, J. Differential Equations, Volume 262 (2017) no. 3, pp. 2987-3033 | DOI | MR | Zbl

[10] Degond, Pierre; Filbet, Francis On the asymptotic limit of the three dimensional Vlasov–Poisson system for large magnetic field: formal derivation, J. Statist. Phys., Volume 165 (2016) no. 4, pp. 765-784 | DOI | MR | Zbl

[11] Falessi, Matteo Valerio Gyrokinetic theory for particle transport in fusion plasmas, Ph. D. Thesis, Università di Roma Tre (2017) | arXiv

[12] Filbet, Francis; Rodrigues, Luis Miguel Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field, SIAM J. Numer. Anal., Volume 54 (2016) no. 2, pp. 1120-1146 | DOI | MR | Zbl

[13] Filbet, Francis; Rodrigues, Luis Miguel Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., Volume 55 (2017) no. 5, pp. 2416-2443 | DOI | MR | Zbl

[14] Freidberg, J. P. Plasma physics and fusion energy, Cambridge University Press, 2008

[15] Frénod, Emmanuel; Lutz, Mathieu On the geometrical gyro-kinetic theory, Kinet. and Relat. Mod., Volume 7 (2014) no. 4, pp. 621-659 | DOI | MR | Zbl

[16] Frénod, Emmanuel; Sonnendrücker, Éric Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., Volume 18 (1998) no. 3-4, pp. 193-213 | MR | Zbl

[17] Frénod, Emmanuel; Sonnendrücker, Éric Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 4, pp. 539-553 | DOI | MR

[18] Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T. H. Gyrokinetic simulations of turbulent transport, Nuclear Fusion, Volume 50 (2010), p. 043002 | DOI

[19] Golse, François; Saint-Raymond, Laure The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), Volume 78 (1999) no. 8, pp. 791-817 | DOI | MR | Zbl

[20] Han-Kwan, Daniel Contribution à l’étude mathématique des plasmas fortement magnétisés, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI (2011) | theses.fr

[21] Hazeltine, R. D.; Meiss, J. D. Plasma confinement, Dover Publications, 2003

[22] Herda, Maxime On massless electron limit for a multispecies kinetic system with external magnetic field, J. Differential Equations, Volume 260 (2016) no. 11, pp. 7861-7891 | DOI | MR | Zbl

[23] Herda, Maxime Analyse asymptotique et numérique de quelques modèles pour le transport de particules chargées, Ph. D. Thesis, Université Claude Bernard Lyon 1 (2017) | theses.fr

[24] Herda, Maxime; Rodrigues, Luis Miguel Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations, Kinet. and Relat. Mod., Volume 12 (2019) no. 3, p. 593–636 | DOI | MR | Zbl

[25] Krommes, John A. The gyrokinetic description of microturbulence in magnetized plasmas, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 175-201 | DOI | MR | Zbl

[26] Lee, W.W. Gyrokinetic approach in particle simulation, Phys. Fluids, Volume 26 (1983) no. 2, pp. 556-562 | DOI | Zbl

[27] Li, Dong On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoamericana, Volume 35 (2019) no. 1, pp. 23-100 | DOI | MR | Zbl

[28] Littlejohn, Robert G. A guiding center Hamiltonian: A new approach, J. Math. Phys., Volume 20 (1979), pp. 2445-2458 | DOI | MR | Zbl

[29] Littlejohn, Robert G. Hamiltonian formulation of guiding center motion, Phys. Fluids, Volume 24 (1981), pp. 1730-1749 | DOI | MR | Zbl

[30] Littlejohn, Robert G. Variational principles of guiding center motion, J. Plasma Physics, Volume 29 (1983), pp. 111-124 | DOI

[31] Lutz, Mathieu Étude mathématique et numérique d’un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d’un plasma de Tokamak, Ph. D. Thesis, Université de Strasbourg (2013) | theses.fr

[32] Miot, Évelyne On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system, 2016 | arXiv

[33] Miyamoto, Kenro Plasma physics and controlled nuclear fusion, Springer Series on Atomic, Optical, and Plasma Physics, 38, Springer-Verlag, Berlin-Heidelberg, 2006 | Zbl

[34] Piel, A. Plasma physics: An introduction to laboratory, space, and fusion plasmas, Springer, Berlin, Heidelberg, 2010 | Zbl

[35] Possanner, Stefan Gyrokinetics from variational averaging: Existence and error bounds, J. Math. Phys., Volume 59 (2018) no. 8, p. 082702, 34 | DOI | MR | Zbl

[36] Saint-Raymond, Laure Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl. (9), Volume 81 (2002) no. 4, pp. 379-399 | DOI | MR | Zbl

[37] Sanders, J. A.; Verhulst, F.; Murdock, J. Averaging methods in nonlinear dynamical systems, Applied Math. Sciences, 59, Springer, New York, 2007 | MR | Zbl

[38] Scott, B. D. Gyrokinetic field theory as a gauge transform or: gyrokinetic theory without Lie transforms, 2017 | arXiv

[39] Sonnendrücker, Eric; Filbet, Francis; Friedman, Alex; Oudet, Edouard; Vay, J.-L. Vlasov simulations of beams with a moving grid, Comput. Phys. Comm., Volume 164 (2004) no. 1-3, pp. 390-395 | DOI

Cité par Sources :