Nous étudions le comportement asymptotique de l’espérance du coût du problème de couplage aléatoire dans une variété compacte de dimension , améliorant en de nombreux points les résultats de [AST18]. En particulier, nous simplifions la preuve originale et nous déterminons le coefficient dominant du développement asymptotique de l’espérance du coût du couplage aléatoire biparti dans une variété compacte de dimension . Nous précisons aussi l’estimation du terme d’erreur dans [Led18] pour le couplage semi-discret. Nous développons une estimation de contraction plus fine pour le flot de la chaleur sur des données aléatoires qui peut avoir un intérêt indépendant du reste de l’article.
We study the asymptotic behaviour of the expected cost of the random matching problem on a -dimensional compact manifold, improving in several aspects the results of [AST18]. In particular, we simplify the original proof (by treating at the same time upper and lower bounds) and we obtain the coefficient of the leading term of the asymptotic expansion of the expected cost for the random bipartite matching on a general -dimensional closed manifold. We also sharpen the estimate of the error term given in [Led18] for the semi-discrete matching. As a technical tool, we develop a refined contractivity estimate for the heat flow on random data that might be of independent interest.
Accepté le :
Publié le :
DOI : 10.5802/jep.105
Keywords: Optimal transport, matching problem, heat semigroup
Mot clés : Transport optimal, problème de couplage, semi-groupe de la chaleur
@article{JEP_2019__6__737_0, author = {Ambrosio, Luigi and Glaudo, Federico}, title = {Finer estimates on the~$2$-dimensional~matching~problem}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {737--765}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.105}, zbl = {07114037}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.105/} }
TY - JOUR AU - Ambrosio, Luigi AU - Glaudo, Federico TI - Finer estimates on the $2$-dimensional matching problem JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 737 EP - 765 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.105/ DO - 10.5802/jep.105 LA - en ID - JEP_2019__6__737_0 ER -
%0 Journal Article %A Ambrosio, Luigi %A Glaudo, Federico %T Finer estimates on the $2$-dimensional matching problem %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 737-765 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.105/ %R 10.5802/jep.105 %G en %F JEP_2019__6__737_0
Ambrosio, Luigi; Glaudo, Federico. Finer estimates on the $2$-dimensional matching problem. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 737-765. doi : 10.5802/jep.105. http://www.numdam.org/articles/10.5802/jep.105/
[AKT84] On optimal matchings, Combinatorica, Volume 4 (1984) no. 4, pp. 259-264 | DOI | MR | Zbl
[AST18] A PDE approach to a 2-dimensional matching problem, Probab. Theory Related Fields (2018), pp. 1-45 | Zbl
[BB00] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000) no. 3, pp. 375-393 | DOI | MR | Zbl
[BB13] Combinatorial optimization over two random point sets, Séminaire de Probabilités XLV (Lect. Notes in Math.), Volume 2078, Springer, Cham, 2013, pp. 483-535 | DOI | MR | Zbl
[Ber46] Probability theory, Moscow-Leningrad, 1946 (In Russian)
[BL14] One-dimensional empirical measures, order statistics and Kantorovich transport distances (2014) (preprint)
[BLG14] On the mean speed of convergence of empirical and occupation measures in Wasserstein distance, Ann. Inst. H. Poincaré Probab. Statist., Volume 50 (2014) no. 2, pp. 539-563 | DOI | MR | Zbl
[BLM03] Concentration inequalities using the entropy method, Ann. Probab., Volume 31 (2003) no. 3, pp. 1583-1614 | DOI | MR | Zbl
[Bro93] The trace of the heat kernel in Lipschitz domains, Trans. Amer. Math. Soc., Volume 339 (1993) no. 2, pp. 889-900 | DOI | MR | Zbl
[Cha84] Eigenvalues in Riemannian geometry, Pure and Applied Math., 115, Academic Press, Inc., Orlando, FL, 1984 | MR | Zbl
[CL06] Concentration inequalities and martingale inequalities: a survey, Internet Math., Volume 3 (2006) no. 1, pp. 79-127 https://projecteuclid.org:443/euclid.im/1175266369 | DOI | MR | Zbl
[CLPS14] Scaling hypothesis for the Euclidean bipartite matching problem, Phys. Rev. E, Volume 90 (2014) no. 1, 012118
[CLY81] On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., Volume 103 (1981) no. 5, pp. 1021-1063 | DOI | MR | Zbl
[CR17] The heat trace for the drifting Laplacian and Schrödinger operators on manifolds, 2017 | arXiv
[CS14] One-dimensional Euclidean matching problem: exact solutions, correlation functions, and universality, Phys. Rev. E, Volume 90 (2014) no. 4, 042112
[DSS13] Constructive quantization: approximation by empirical measures, Ann. Inst. H. Poincaré Probab. Statist., Volume 49 (2013) no. 4, pp. 1183-1203 | DOI | MR | Zbl
[DY95] Asymptotics for transportation cost in high dimensions, J. Theoret. Probab., Volume 8 (1995) no. 1, pp. 97-118 | DOI | MR | Zbl
[EKS15] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[Erb10] The heat equation on manifolds as a gradient flow in the Wasserstein space, Ann. Inst. H. Poincaré Probab. Statist., Volume 46 (2010) no. 1, pp. 1-23 | DOI | MR | Zbl
[FG15] On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields, Volume 162 (2015) no. 3-4, pp. 707-738 | DOI | MR | Zbl
[GHO18] A large-scale regularity theory for the Monge-Ampère equation with rough data and application to the optimal matching problem, 2018 | arXiv
[Gla19] On the c-concavity with respect to the quadratic cost on a manifold, Nonlinear Anal., Volume 178 (2019), pp. 145-151 | DOI | MR | Zbl
[Gri99] Estimates of heat kernels on Riemannian manifolds, Spectral theory and geometry (Edinburgh, 1998) (London Math. Soc. Lecture Note Ser.), Volume 273, Cambridge Univ. Press, Cambridge, 1999, pp. 140-225 | DOI | MR | Zbl
[Gri06] Heat kernels on weighted manifolds and applications, The ubiquitous heat kernel (Contemp. Math.), Volume 398, American Mathematical Society, 2006, pp. 93-191 | DOI | MR | Zbl
[Hoe63] Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., Volume 58 (1963) no. 301, pp. 13-30 http://www.jstor.org/stable/2282952? | DOI | MR
[HS13] Optimal transport from Lebesgue to Poisson, Ann. Probab., Volume 41 (2013) no. 4, pp. 2426-2478 | DOI | MR | Zbl
[Hsu99] Estimates of derivatives of the heat kernel on a compact Riemannian manifold, Proc. Amer. Math. Soc., Volume 127 (1999) no. 12, pp. 3739-3744 | MR | Zbl
[JKO98] The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17 | DOI | MR | Zbl
[Led17] On optimal matching of Gaussian samples, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 457 (2017), pp. 226-264 Reprinted in J. Math. Sci. (N.Y.) 38 (2019), no. 4, p. 495–522 | Zbl
[Led18] On optimal matching of Gaussian samples II (2018) (http://perso.math.univ-toulouse.fr/ledoux/files/2019/03/SudakovII.pdf)
[MS67] Curvature and the eigenvalues of the Laplacian, J. Differential Geometry, Volume 1 (1967) no. 1, pp. 43-69 http://projecteuclid.org/euclid.jdg/1214427880 | DOI | MR | Zbl
[OV00] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400 | DOI | MR | Zbl
[Pet98] Riemannian geometry, Graduate Texts in Math., 171, Springer-Verlag, New York, 1998 | MR | Zbl
[San15] Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser/Springer, Cham, 2015 | DOI | MR | Zbl
[SC10] The heat kernel and its estimates, Probabilistic approach to geometry (Adv. Stud. Pure Math.), Volume 57, Math. Soc. Japan, Tokyo, 2010, pp. 405-436 | DOI | MR | Zbl
[ST98] Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. Geom., Volume 6 (1998) no. 4, pp. 669-685 | DOI | MR | Zbl
[Tal92] Matching random samples in many dimensions, Ann. Appl. Probab., Volume 2 (1992) no. 4, pp. 846-856 | DOI | MR | Zbl
[Tal14] Upper and lower bounds of stochastic processes, Modern Surveys in Math., 60, Springer-Verlag, Berlin, 2014 | MR | Zbl
[Tal18] Scaling and non-standard matching theorems, Comptes Rendus Mathématique, Volume 356 (2018) no. 6, pp. 692-695 | DOI | MR | Zbl
[Vil09] Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer Verlag, Berlin, 2009 | Zbl
[WB17] Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance, 2017 | arXiv | Zbl
[ZLJ16] Heat kernel bounds on metric measure spaces and some applications, Potential Anal., Volume 44 (2016) no. 3, pp. 601-627 | MR | Zbl
Cité par Sources :