À l’aide d’opérateurs vertex, nous construisons des représentations du Yangien d’une algèbre de Kac-Moody simplement lacée et de son double. Comme corollaire, nous démontrons la propriété de Poincaré-Birkhoff-Witt pour les Yangiens affines simplement lacés.
Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody algebra and of its double. As a corollary, we prove the Poincaré-Birkhoff-Witt property for simply laced affine Yangians.
Accepté le :
Publié le :
DOI : 10.5802/jep.103
Keywords: Yangian, vertex operator, Kac-Moody algebra, Fock space, twisted group algebra, central extension
Mot clés : Yangien, opérateur vertex, algèbre de Kac-Moody, espace de Fock, algèbre de groupe tordue, extension centrale
@article{JEP_2019__6__665_0, author = {Guay, Nicolas and Regelskis, Vidas and Wendlandt, Curtis}, title = {Vertex representations for {Yangians} of {Kac-Moody} algebras}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {665--706}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.103}, zbl = {07114036}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.103/} }
TY - JOUR AU - Guay, Nicolas AU - Regelskis, Vidas AU - Wendlandt, Curtis TI - Vertex representations for Yangians of Kac-Moody algebras JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 665 EP - 706 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.103/ DO - 10.5802/jep.103 LA - en ID - JEP_2019__6__665_0 ER -
%0 Journal Article %A Guay, Nicolas %A Regelskis, Vidas %A Wendlandt, Curtis %T Vertex representations for Yangians of Kac-Moody algebras %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 665-706 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.103/ %R 10.5802/jep.103 %G en %F JEP_2019__6__665_0
Guay, Nicolas; Regelskis, Vidas; Wendlandt, Curtis. Vertex representations for Yangians of Kac-Moody algebras. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 665-706. doi : 10.5802/jep.103. http://www.numdam.org/articles/10.5802/jep.103/
[AG19] An explicit isomorphism between quantum and classical , Transform. Groups (2019), 36 pages | arXiv | DOI
[AMR06] On the -matrix realization of Yangians and their representations, Ann. Henri Poincaré, Volume 7 (2006) no. 7-8, pp. 1269-1325 | DOI | MR | Zbl
[Ber89] Vertex operator representations of the quantum affine algebra , Lett. Math. Phys., Volume 17 (1989) no. 3, pp. 239-245 | DOI | MR
[BT19] Homomorphisms between different quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra, Volume 223 (2019) no. 2, pp. 867-899 | DOI | MR | Zbl
[BTM87] Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations, Comm. Math. Phys., Volume 111 (1987) no. 2, pp. 181-246 http://projecteuclid.org/euclid.cmp/1104159538 | DOI | MR | Zbl
[CJ01] Realization of level one representations of at a root of unity, Duke Math. J., Volume 108 (2001) no. 1, pp. 183-197 | DOI | MR | Zbl
[DK00] Weyl group extension of quantized current algebras, Transform. Groups, Volume 5 (2000) no. 1, pp. 35-59 | DOI | MR | Zbl
[Dri86] Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen., Volume 20 (1986) no. 1, pp. 69-70 | MR | Zbl
[FJ88] Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. U.S.A., Volume 85 (1988) no. 24, pp. 9373-9377 | DOI | MR | Zbl
[FK81] Basic representations of affine Lie algebras and dual resonance models, Invent. Math., Volume 62 (1980/81) no. 1, pp. 23-66 | DOI | MR | Zbl
[FLM88] Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[FT19] Shifted quantum affine algebras: integral forms in type A, Arnold Math. J. (2019) | arXiv | DOI
[GNOS86] Vertex operators for non-simply-laced algebras, Comm. Math. Phys., Volume 107 (1986) no. 2, pp. 179-212 http://projecteuclid.org/euclid.cmp/1104116020 | DOI | MR | Zbl
[GNW18] Coproduct for Yangians of affine Kac-Moody algebras, Adv. Math., Volume 338 (2018), pp. 865-911 | DOI | MR | Zbl
[GRW19] Equivalences between three presentations of orthogonal and symplectic Yangians, Lett. Math. Phys., Volume 109 (2019) no. 2, pp. 327-379 | DOI | MR | Zbl
[GTL13] Yangians and quantum loop algebras, Selecta Math. (N.S.), Volume 19 (2013) no. 2, pp. 271-336 | DOI | MR | Zbl
[GTL16] Yangians, quantum loop algebras, and abelian difference equations, J. Amer. Math. Soc., Volume 29 (2016) no. 3, pp. 775-824 | DOI | MR | Zbl
[Gua07] Affine Yangians and deformed double current algebras in type A, Adv. Math., Volume 211 (2007) no. 2, pp. 436-484 | DOI | MR | Zbl
[IK96] A central extension of and its vertex representations, Lett. Math. Phys., Volume 37 (1996) no. 3, pp. 319-328 | DOI | Zbl
[Ioh96] Bosonic representations of Yangian double with , J. Phys. A, Volume 29 (1996) no. 15, pp. 4593-4621 | DOI | MR
[Jin90] Twisted vertex representations of quantum affine algebras, Invent. Math., Volume 102 (1990) no. 3, pp. 663-690 | DOI | MR
[Jin98] Quantum Kac-Moody algebras and vertex representations, Lett. Math. Phys., Volume 44 (1998) no. 4, pp. 261-271 | DOI | MR | Zbl
[Jin99] Level one representations of , Proc. Amer. Math. Soc., Volume 127 (1999) no. 1, pp. 21-27 | DOI | MR | Zbl
[Jin00] Quantum -algebras and representations of quantum affine algebras, Comm. Algebra, Volume 28 (2000) no. 2, pp. 829-844 | DOI | MR | Zbl
[JKM99] Level one representations of quantum affine algebras , Selecta Math. (N.S.), Volume 5 (1999) no. 2, pp. 243-255 | DOI | MR | Zbl
[JM96] Vertex operators of level-one -modules, Lett. Math. Phys., Volume 36 (1996) no. 2, pp. 127-143 | DOI | MR | Zbl
[Kac90] Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | DOI | Zbl
[Kas84] Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra, Volume 34 (1984) no. 2-3, pp. 265-275 | DOI | Zbl
[Kho97] Central extension of the Yangian double, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) (Sémin. Congr.), Volume 2, Société Mathématique de France, Paris, 1997, pp. 119-135 | MR | Zbl
[Kod19] Affine Yangian action on the Fock space, Publ. RIMS, Kyoto Univ., Volume 55 (2019) no. 1, pp. 189-234 | DOI | MR | Zbl
[KSU97] A level-one representation of the quantum affine superalgebra , Comm. Math. Phys., Volume 188 (1997) no. 2, pp. 367-378 | DOI | MR | Zbl
[KT96] Yangian double, Lett. Math. Phys., Volume 36 (1996) no. 4, pp. 373-402 | DOI | MR | Zbl
[Lev93] On PBW bases for Yangians, Lett. Math. Phys., Volume 27 (1993) no. 1, pp. 37-42 | DOI | MR | Zbl
[LL04] Introduction to vertex operator algebras and their representations, Progress in Math., 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[Mol07] Yangians and classical Lie algebras, Math.Surveys and Monographs, 143, American Mathematical Society, Providence, RI, 2007 | DOI | MR | Zbl
[MRY90] Toroidal Lie algebras and vertex representations, Geom. Dedicata, Volume 35 (1990) no. 1-3, pp. 283-307 | DOI | MR | Zbl
[Nak01] Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc., Volume 14 (2001) no. 1, pp. 145-238 | DOI | MR | Zbl
[Neh03] An introduction to universal central extensions of Lie superalgebras, Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001) (Math. Appl.), Volume 555, Kluwer Acad. Publ., Dordrecht, 2003, pp. 141-166 | DOI | MR | Zbl
[Sai98] Quantum toroidal algebras and their vertex representations, Publ. RIMS, Kyoto Univ., Volume 34 (1998) no. 2, pp. 155-177 | DOI | MR | Zbl
[YZ18a] Cohomological Hall algebras and affine quantum groups, Selecta Math. (N.S.), Volume 24 (2018) no. 2, pp. 1093-1119 | DOI | MR | Zbl
[YZ18b] The PBW theorem for the affine Yangians, 2018 | arXiv
Cité par Sources :