Syzygies and logarithmic vector fields along plane curves
[Syzygies et champs de vecteurs logarithmiques le long de courbes planes]
Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 247-267.

Nous étudions les relations entre les syzygies de l’idéal jacobien associé à l’équation définissant une courbe plane C et la stabilité du faisceau des champs de vecteurs logarithmiques le long de C, la liberté du diviseur C et les propriétés de Torelli de C (au sens de Dolgachev-Kapranov). Nous montrons en particulier que les courbes ayant un petit nombre de points doubles et de cusps ont la propriété de Torelli.

We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve C and the stability of the sheaf of logarithmic vector fields along C, the freeness of the divisor C and the Torelli properties of C (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.

DOI : 10.5802/jep.10
Classification : 14C34, 14H50, 32S05
Keywords: Syzygy, plane curve, logarithmic vector fields, stable bundle, free divisor, Torelli property
Mot clés : Syzygie, courbe plane, champ de vecteurs logarithmique, fibré stable, diviseur libre, propriété de Torelli
Dimca, Alexandru 1 ; Sernesi, Edoardo 2

1 Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351 Parc Valrose, 06108 Nice, Cedex 02, France
2 Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy
@article{JEP_2014__1__247_0,
     author = {Dimca, Alexandru and Sernesi, Edoardo},
     title = {Syzygies and logarithmic vector fields along plane curves},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {247--267},
     publisher = {Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.10},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.10/}
}
TY  - JOUR
AU  - Dimca, Alexandru
AU  - Sernesi, Edoardo
TI  - Syzygies and logarithmic vector fields along plane curves
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 247
EP  - 267
VL  - 1
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.10/
DO  - 10.5802/jep.10
LA  - en
ID  - JEP_2014__1__247_0
ER  - 
%0 Journal Article
%A Dimca, Alexandru
%A Sernesi, Edoardo
%T Syzygies and logarithmic vector fields along plane curves
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 247-267
%V 1
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.10/
%R 10.5802/jep.10
%G en
%F JEP_2014__1__247_0
Dimca, Alexandru; Sernesi, Edoardo. Syzygies and logarithmic vector fields along plane curves. Journal de l’École polytechnique — Mathématiques, Tome 1 (2014), pp. 247-267. doi : 10.5802/jep.10. http://www.numdam.org/articles/10.5802/jep.10/

[1] Angelini, E. Logarithmic bundles of hypersurface arrangements in n (2013) (arXiv:1304.5709) | MR

[2] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985, pp. xvi+386 | DOI | MR | Zbl

[3] Arnold, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston, Inc., Boston, MA, 1988, pp. viii+492 | DOI | MR | Zbl

[4] Buchweitz, R.-O.; Conca, A. New free divisors from old, J. Commut. Algebra, Volume 5 (2013) no. 1, pp. 17-47 (arXiv:1211.4327) | MR | Zbl

[5] Dimca, A. Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1987, pp. xviii+242 | DOI | MR | Zbl

[6] Dimca, A. Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 56(104) (2013) no. 2, pp. 191-203 | MR

[7] Dimca, A.; Saito, M. Graded Koszul cohomology and spectrum of certain homogeneous polynomials (2012) (arXiv:1212.1081)

[8] Dimca, A.; Saito, M. Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points (2014) (arXiv:1403.4563)

[9] Dimca, A.; Saito, M. Some remarks on limit mixed Hodge structures and spectrum, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., Volume 22 (2014) no. 2, pp. 69-78 | MR

[10] Dimca, A.; Sticlaru, G. Koszul complexes and pole order filtrations, Proc. Edinburgh Math. Soc. (2) (to appear, arXiv:1108.3976)

[11] Dimca, A.; Sticlaru, G. Chebyshev curves, free resolutions and rational curve arrangements, Math. Proc. Cambridge Philos. Soc., Volume 153 (2012) no. 3, pp. 385-397 | DOI | MR | Zbl

[12] Dimca, A.; Sticlaru, G. Syzygies of Jacobian ideals and weighted homogeneous singularities (2014) (arXiv:1407.0168)

[13] Dolgachev, I.; Kapranov, M. Arrangements of hyperplanes and vector bundles on n , Duke Math. J., Volume 71 (1993) no. 3, pp. 633-664 | DOI | MR | Zbl

[14] Granger, M.; Mond, D.; Nieto-Reyes, A.; Schulze, M. Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 2, pp. 811-850 | Numdam | MR | Zbl

[15] Hartshorne, R. Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977 | MR | Zbl

[16] Hulek, K. Stable rank-2 vector bundles on 2 with c 1 odd, Math. Ann., Volume 242 (1979) no. 3, pp. 241-266 | DOI | MR | Zbl

[17] Kollár, J. Singularities of pairs, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, American Mathematical Society, Providence, RI, 1997, pp. 221-287 | MR | Zbl

[18] Narváez Macarro, L. Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors, Singularities I (Contemp. Math.), Volume 474, Amer. Math. Soc., Providence, RI, 2008, pp. 245-269 | DOI | MR | Zbl

[19] Okonek, C.; Schneider, M.; Spindler, H. Vector bundles on complex projective spaces, Progress in Math., 3, Birkhäuser, Boston, Mass., 1980, pp. vii+389 | MR | Zbl

[20] Orlik, P.; Terao, H. Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992, pp. xviii+325 | DOI | MR | Zbl

[21] Saito, K. Einfach-elliptische Singularitäten, Invent. Math., Volume 23 (1974), pp. 289-325 | MR | Zbl

[22] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl

[23] Sernesi, E. Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, 334, Springer-Verlag, Berlin, 2006, pp. xii+339 | MR | Zbl

[24] Sernesi, E. The local cohomology of the Jacobian ring, Doc. Math., Volume 19 (2014), pp. 541-565 | MR

[25] Simis, A.; Tohăneanu, Ş. O. Homology of homogeneous divisors, Israel J. Math., Volume 200 (2014) no. 1, pp. 449-487 (arXiv:1207.5862) | DOI | MR

[26] Sticlaru, G. Free divisors versus stability and coincidence thresholds (2014) (arXiv:1401.1843)

[27] Ueda, K.; Yoshinaga, M. Logarithmic vector fields along smooth divisors in projective spaces, Hokkaido Math. J., Volume 38 (2009) no. 3, pp. 409-415 | DOI | MR | Zbl

[28] Vallès, J. Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z., Volume 233 (2000) no. 3, pp. 507-514 | DOI | MR | Zbl

[29] Wahl, J. M. Deformations of plane curves with nodes and cusps, Amer. J. Math., Volume 96 (1974), pp. 529-577 | MR | Zbl

[30] Yoshinaga, M. Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 2, pp. 483-512 (arXiv:1212.3523) | DOI | Numdam | MR

Cité par Sources :