Inverse Problems: Visibility and Invisibility
Journées équations aux dérivées partielles (2012), article no. 11, 64 p.

This survey article expands on the lectures given at Biarritz in June, 2012, on “Inverse Problems: Visibility and Invisibility". The first inverse problem we consider is whether one can determine the electrical conductivity of a medium by making voltage and current measurements at the boundary. This is called electrical impedance tomography (EIT) and also Calderón’s problem since the famous analyst proposed it in the mathematical literature [38]. The second is on travel time tomography. The question is whether one can determine the anisotropic index of refraction of a medium by measuring the travel times of waves going through the medium. This can be recast as a geometry problem, the boundary rigidity problem. Can we determine a Riemannian metric of a compact Riemannian manifold with boundary by measuring the distance function between boundary points? These two inverse problems concern visibility, that is whether we can determine the internal properties of a medium by making measurements at the boundary. The last topic of this paper considers the opposite issue: invisibility: Can one make objects invisible to different types of waves, including light?

@article{JEDP_2012____A11_0,
     author = {Uhlmann, Gunther},
     title = {Inverse {Problems:} {Visibility} and {Invisibility}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {11},
     pages = {1--64},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2012},
     doi = {10.5802/jedp.94},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.94/}
}
TY  - JOUR
AU  - Uhlmann, Gunther
TI  - Inverse Problems: Visibility and Invisibility
JO  - Journées équations aux dérivées partielles
PY  - 2012
SP  - 1
EP  - 64
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.94/
DO  - 10.5802/jedp.94
LA  - en
ID  - JEDP_2012____A11_0
ER  - 
%0 Journal Article
%A Uhlmann, Gunther
%T Inverse Problems: Visibility and Invisibility
%J Journées équations aux dérivées partielles
%D 2012
%P 1-64
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.94/
%R 10.5802/jedp.94
%G en
%F JEDP_2012____A11_0
Uhlmann, Gunther. Inverse Problems: Visibility and Invisibility. Journées équations aux dérivées partielles (2012), article  no. 11, 64 p. doi : 10.5802/jedp.94. http://www.numdam.org/articles/10.5802/jedp.94/

[1] Ablowitz, M., Yaacov, D. B. and Fokas, A., On the inverse scattering transform for the Kadomtsev-Petviashvili equation, Studies Appl. Math., 69(1983), 135–143. | MR | Zbl

[2] Ahlfors, L., Quasiconformal Mappings, Van Nostrand, (1966). | MR

[3] Albin, P, Guillarmou, C., Tzou, L. and Uhlmann, G., Inverse boundary problems for systems in two dimensions, to appear Annales Institut Henri Poincaré. | MR

[4] Alessandrini, G., Stable determination of conductivity by boundary measurements, App. Anal., 27(1988), 153–172. | MR | Zbl

[5] Alessandrini, G., Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84(1990), 252-272. | MR | Zbl

[6] Alessandrini, G., Open issues of stability for the inverse conductivity problem, J. Inverse Ill-Posed Probl., 15(2007), 451–460. | MR | Zbl

[7] Alessandrini, G. and Vessella, S., Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35(2005), 207–241. | MR | Zbl

[8] Alexandrova, I., Structure of the Semi-Classical Amplitude for General Scattering Relations, Comm. PDE, 30(2005), 1505-1535. | MR | Zbl

[9] Ammari, H. and Uhlmann, G., Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J., 53(2004), 169-183. | MR | Zbl

[10] Yu. E. Anikonov, Some Methods for the Study of Multidimensional Inverse Problems , Nauka, Sibirsk Otdel., Novosibirsk (1978). | MR

[11] Astala, K. and Päivärinta, L., Calderón’s inverse conductivity problem in the plane. Annals of Math., 163(2006), 265-299. | MR | Zbl

[12] Astala, K., Lassas, M. and Päiväirinta, L., Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Diff. Eqns., 30(2005), 207–224. | MR | Zbl

[13] Bal, G., Hybrid inverse problems and internal functionals, Chapter in Inside Out II, MSRI Publications 60, Cambridge University Press (2012), 271-323 (ed. by G. Uhlmann).

[14] Bal, G., Langmore, I. and Monard, F., Inverse transport with isotropic sources and angularly averaged measurements, Inverse Probl. Imaging, 2(2008),23–42. | MR | Zbl

[15] Bal, G., Ren, K., Uhlmann, G, and Zhou, T., Quantitative thermo-acoustics and related problems, Inverse Problems, 27(2011), 055007. | MR | Zbl

[16] Bal, G. and Uhlmann, G., Inverse diffusion theory of photoacoustics, Inverse Problems, 26(2010), 085010. | MR | Zbl

[17] Bal, G. and Uhlmann, G., Reconstructions for some coupled-physics inverse problems, Applied Mathematics Letters, 25(2012), 1030-1033. | MR | Zbl

[18] Bal, G. and Uhlmann, G., Reconstructions of coefficients in scalar second-order elliptic equations from knowledge of their solutions, to appear Comm. Pure Appl. Math. | MR | Zbl

[19] Barber, D. and Brown, B., Applied potential tomography, J. Phys. E, 17(1984), 723–733.

[20] Barceló, T., Faraco, D. and Ruiz, A., Stability of Calderón’s inverse problem in the plane, Journal des Mathématiques Pures et Appliquées, 88(2007), 522-556. | MR | Zbl

[21] Beals, R. and Coifman, R., Transformation spectrales et equation d’evolution non lineares, Seminaire Goulaouic-Meyer-Schwarz, exp. 21, 1981-1982. | Numdam | Zbl

[22] Beals, R. and Coifman, R., Multidimensional inverse scattering and nonlinear PDE, Proc. Symp. Pure Math., 43(1985), American Math. Soc., Providence, 45–70. | Zbl

[23] Belishev, M. I., The Calderón problem for two-dimensional manifolds by the BC-method, SIAM J. Math. Anal., 35(2003), 172–182. | MR | Zbl

[24] Belishev, M. and Kurylev, Y, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Diff. Eqns., 17(1992), 767–804. | MR | Zbl

[25] Borcea, L., Electrical impedance tomography, Inverse Problems, 18(2002), R99–R136. | MR | Zbl

[26] Bernstein, I.N. and Gerver, M.L., Conditions on distinguishability of metrics by hodographs. Methods and Algorithms of Interpretation of Seismological Information, Computerized Seismology 13, Nauka, Moscow, 50–73 (in Russian.)

[27] Besson, G., Courtois, G. and Gallot, S., Entropies et rigidités des espaces localement symétriques de courbure strictment négative, Geom. Funct. Anal., 5(1995), 731-799. | MR | Zbl

[28] Beylkin, G., Stability and uniqueness of the solution of the inverse kinematic problem in the multidimensional case, J. Soviet Math., 21(1983), 251–254. | Zbl

[29] Blasten, E, Stability and uniqueness for the inverse problem of the Schrödinger equation with potentials in W p,ϵ , arXiv:1106.0632.

[30] Borcea, L., Electrical impedance tomography, Inverse Problems, 18(2002), R99–R136. | MR | Zbl

[31] Borcea, L., Druskin, V., Guevara Vasquez, F. and Mamonov, A.V., Resistor network approaches to electrical impedance tomography, Inside Out II, MSRI Publications, Volume 60(2012), 55-118 (G. Uhlmann, editor).

[32] Brown, R., Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result, J. Inverse Ill-Posed Probl., 9(2001), 567–574. | MR | Zbl

[33] Brown, R. and Torres, R., Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in L p ,p>2n, J. Fourier Analysis Appl., 9(2003), 1049-1056. | Zbl

[34] Brown, R. and Uhlmann, G., Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions, Comm. PDE, 22(1997), 1009-10027. | MR

[35] Bukhgeim, A., Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl., 16(2008), 19-34. | MR | Zbl

[36] Bukhgeim, A. and Uhlmann, G., Recovering a potential from partial Cauchy data, Comm. PDE, 27(2002), 653-668. | MR | Zbl

[37] Burago, D. and Ivanov, S., Boundary rigidity and filling volume minimality for metrics close to a Euclidean metric, Annals of Math., 171(2010), 1183-1211 | MR | Zbl

[38] Calderón, A. P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. | MR

[39] Calderón, A. P., Reminiscencias de mi vida matemática, Discurso de investidura de “Doctor Honoris Causa", Universidad Autónoma de Madrid, Publicaciones UAM (1997), 117-125.

[40] Calderón, A. P., Boundary value problems for elliptic equations. Outlines of the joint Soviet-American symposium on partial differential equations, 303-304, Novisibirsk (1963). | MR

[41] Caro, P., Ola, P. and Salo, M., Inverse boundary value problem for Maxwell equations with local data, Comm. PDE, 34(2009), 1425-1464. | MR | Zbl

[42] Chanillo S., A problem in electrical prospection and a n-dimensional Borg-Levinson theorem, Proc. AMS, 108(1990), 761–767. | MR | Zbl

[43] Chen, J. and Yang, Y., Quantitative photo-acoustic tomography with partial data, Inverse Problems, 28(2012), 115014. | MR | Zbl

[44] Cheney, M., Isaacson, D., Newell, J. C., Electrical impedance tomography, SIAM Rev., 41(1999), 85–101. | MR | Zbl

[45] Creager, K. C., Anisotropy of the inner core from differential travel times of the phases PKP and PKIPK, Nature, 356(1992), 309-314.

[46] Croke, C., Rigidity and the distance between boundary points, J. Differential Geom., 33(1991), 445–464. | MR | Zbl

[47] Croke, C., Rigidity for surfaces of non-positive curvature , Comment. Math. Helv., 65(1990), 150-169. | MR | Zbl

[48] Croke, C, Dairbekov, D. and Sharafutdinov, V., Local boundary rigidity of a compact Riemannian manifold with curvature bounded above, Trans. Amer. Math. Soc. 352(2000), no. 9, 3937–3956. | MR | Zbl

[49] Croke, C. and Kleiner, B., Conjugacy and Rigidity for Manifolds with a Parallel Vector Field, J. Diff. Geom. 39(1994), 659–680. | MR | Zbl

[50] Dairbekov, N. and Uhlmann, G., Reconstructing the metric and magnetic field from the scattering relation, Inverse Problems and Imaging, 4(2010), 397-409. | MR | Zbl

[51] Dos Santos Ferreira, D., Kenig, C.E., Sjöstrand, J. and Uhlmann, G., On The linearized local Calderón problem, Math. Research Lett., 16(2009), 955-970. | MR | Zbl

[52] Dos Santos Ferreira, D., Kenig, C.E., Sjöstrand, J. and Uhlmann, G., Determining a magnetic Schrödinger operator from partial Cauchy data,Comm. Math. Phys., 271(2007), 467–488. | MR | Zbl

[53] Dos Santos Ferreira, D., Kenig, C.E., Salo, M., and Uhlmann, G., Limiting Carleman weights and anisotropic inverse problems, Inventiones Math., 178(2009), 119-171. | MR | Zbl

[54] Duistermaat, J.J. and Hörmander, L., Fourier integral operators II, Acta Mathematica, 128(1972), 183-269. | MR | Zbl

[55] Eisenhart, L., Riemannian geometry, 2nd printing, Princeton University Press, 1949. | MR | Zbl

[56] Eskin, G., Ralston, J., On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18(2002), 907–921. | MR | Zbl

[57] Faddeev D., Growing solutions of the Schrödinger equation , Dokl. Akad. Nauk SSSR, 165(1965), 514–517 (translation in Sov. Phys. Dokl. 10, 1033). | Zbl

[58] Francini, E., Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map, Inverse Problems, 16(2000), 107–119. | MR | Zbl

[59] Fridman, B. Kuchment, P., Ma, D. and Papanicolaou, Vassilis G., Solution of the linearized inverse conductivity problem in a half space via integral geometry. Voronezh Winter Mathematical Schools, 85–95, Amer. Math. Soc.Transl. Ser. 2,, 184, 85-95. Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[60] M. L. Gerver and N. S. Nadirashvili, An isometricity conditions for Riemannian metrics in a disk, Soviet Math. Dokl. 29 (1984), 199–203. | Zbl

[61] Gilbarg D. and Trudinger, N., Elliptic Partial Differential Equations, Interscience Publishers (1964).

[62] Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev., 51(2009), 3–33. | MR | Zbl

[63] Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), 46(2009), 55–97. | MR | Zbl

[64] Greenleaf, A., Lassas, M. and Uhlmann, G., The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math, 56(2003), 328–352. | MR | Zbl

[65] Greenleaf, A., Lassas, M. and Uhlmann, G., Anisotropic conductivities that cannot be detected in EIT, Physiolog. Meas. (special issue on Impedance Tomography), 24(2003), 413-420.

[66] Greenleaf, A., Lassas, M. and Uhlmann, G., On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett., 10 (2003), 685-693. | MR | Zbl

[67] Greenleaf, A. and Uhlmann, G., Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J., 108(2001), 599-617. ‘ | MR | Zbl

[68] M. Gromov, Filling Riemannian manifolds, J. Differential Geometry 18(1983), no. 1, 1–148. | MR | Zbl

[69] Guillarmou, C. and Sá Barreto, A., Inverse problems for Einstein manifolds, Inverse Problems and Imaging, 3(2009), 1-15. | MR | Zbl

[70] Guillarmou, C. and Tzou, L., Calderón inverse problem on Riemann surfaces, Proceedings of CMA, 44(2009), 129-142. Volume for the AMSI/ANU workshop on Spectral Theory and Harmonic Analysis. | Zbl

[71] Guillarmou, C. and Tzou, L., Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158(2011), 83-120. | MR | Zbl

[72] Guillarmou, C. and Tzou, L, Identification of a connection from Cauchy data space on a Riemann surface with boundary, Geometric and Functional Analysis (GAFA), 21(2011), 393-418. | MR | Zbl

[73] V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix. Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976). Publ. Res. Inst. Math. Sci. 12(1976/77), supplement, 69–88. | MR | Zbl

[74] Hähner, P., A periodic Faddeev-type solution operator, J. Differential Equations, 128(1996), 300–308. | MR | Zbl

[75] Hanke, M. and Brühl, M., Recent progress in electrical impedance tomography. Special section on imaging, it Inverse Problems, 19(2003),S65–S90. | MR | Zbl

[76] Haberman, B. and Tataru, D., Uniqueness in Calderón’s problem with Lipschitz conductivities, to appear Duke Math. J. | MR | Zbl

[77] Heck, H. and Wang, J.-N., Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22(2006), 1787–1796. | MR | Zbl

[78] Henkin, G. and Michel, V., Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18(2008), 1033–1052. | MR | Zbl

[79] Herglotz, G., Uber die elastizitaet derErde bei beruecksichtigung ihrer variablen dichte, Zeitschr. fur Math. Phys., 52(1905), 275-299.

[80] Holder, D., Electrical Impedance Tomography, Institute of Physics Publishing, Bristol and Philadelphia, 2005.

[81] Holder, D., Isaacson, D., Müller, J. and Siltanen, S., editors, Physiol. Meas., 25(2003) no 1.

[82] Hörmander, L., The analysis of linear partial differential operators, vol. I, Springer-Verlag, Berlin, 1983. | Zbl

[83] Ide, T., Isozaki, H., Nakata S., Siltanen, S. and Uhlmann, G., Probing for electrical inclusions with complex spherical waves, Comm. Pure and Applied Math., 60(2007), 1415-1442. | MR | Zbl

[84] Ikehata, M., The enclosure method and its applications, Chapter 7 in “Analytic extension formulas and their applications" (Fukuoka, 1999/Kyoto, 2000), Int. Soc. Anal. Appl. Comput., Kluwer Acad. Pub., 9(2001), 87-103. | MR | Zbl

[85] Ikehata, M., How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms, J. Inverse Ill-Posed Probl., 7(1999), 255–271. | MR | Zbl

[86] Ikehata, M. and Siltanen, S., Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements, Inverse Problems, 16(2000), 273-296. | MR | Zbl

[87] Imanuvilov, O. and Yamamoto, M., Inverse boundary value for Schrödinger equation in two dimensions, arXiv arXiv:1211.1419v1.

[88] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., The Calderón problem with partial data in two dimensions, Journal AMS, 23(2010), 655-691. | MR | Zbl

[89] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., On determination of second order operators from partial Cauchy data, Proceedings National Academy of Sciences., 108(2011), 467-472. | MR | Zbl

[90] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Partial data for general second order elliptic operators in two dimensions, Publ. Research Insti. Math. Sci., 48(2012), 971-1055. | MR | Zbl

[91] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Inverse boundary problem with Cauchy data on disjoint sets, Inverse Problems, 27(2011), 085007. | MR | Zbl

[92] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., On reconstruction of Lamé coefficients from partial Cauchy data in three dimensions, Inverse Problems, 28(2012), 125002. | MR | Zbl

[93] Isaacson D. and Isaacson E., Comment on Calderón’s paper: “On an inverse boundary value problem”, Math. Comput., 52(1989), 553–559. | MR | Zbl

[94] Isaacson, D., Müller, J. L., Newell, J. C. and Siltanen, S., Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography, IEEE Transactions on Medical Imaging, 23(2004), 821- 828.

[95] Isaacson, D., Newell, J. C., Goble, J. C. and Cheney M., Thoracic impedance images during ventilation, Annual Conference of the IEEE Engineering in Medicine and Biology Society, 12,(1990), 106–107.

[96] Isakov, V., On uniqueness in the inverse conductivity problem with local data, Inverse Problems and Imaging, 1(2007), 95-105. | MR | Zbl

[97] Isakov, V., On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rat. Mech. Anal., 124(1993) , 1–12. | MR | Zbl

[98] Isakov, V., Completeness of products of solutions and some inverse problems for PDE, J. Diff. Equations, 92(1991), 305–317. | MR | Zbl

[99] Isakov, V. and Nachman, A., Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. of AMS, 347(1995), 3375–3390. | MR | Zbl

[100] Isakov, V. and Sylvester, J., Global uniqueness for a semilinear elliptic inverse problem, Comm. Pure Appl. Math., 47(1994), 1403–1410. | MR | Zbl

[101] Isozaki, H., Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space, Amer. J. Math., 126(2004), 1261–1313. | MR | Zbl

[102] Isozaki, H. and Uhlmann, G., Hyperbolic geometric and the local Dirichlet-to-Neumann map, Advances in Math. 188(2004), 294-314. | MR | Zbl

[103] Jordana, J., Gasulla, J. M. and Paola’s-Areny, R., Electrical resistance tomography to detect leaks from buried pipes, Meas. Sci. Technol., 12(2001), 1061-1068.

[104] Jossinet, J., The impedivity of freshly excised human breast tissue, Physiol. Meas., 19(1998), 61-75.

[105] Kang, H. and Uhlmann, G., Inverse problems for the Pauli Hamiltonian in two dimensions, Journal of Fourier Analysis and Applications, 10(2004), 201-215. | MR | Zbl

[106] Kashiwara, M., On the structure of hyperfunctions, Sagaku no Ayumi, 15(1970), 19–72 (in Japanese).

[107] Kenig, C., Salo, M. and Uhlmann, G., Inverse Problems for the Anisotropic Maxwell’s Equations, Duke Math. J., 157(2011), 369-419. | MR | Zbl

[108] Kenig, C., Sjöstrand, J. and Uhlmann, G., The Calderón problem with partial data, Annals of Math., 165(2007), 567-591. | MR | Zbl

[109] Knudsen, K., The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31(2006), 57–71. | MR | Zbl

[110] Knudsen, K. and Salo, M., Determining nonsmooth first order terms from partial boundary measurements, Inverse Problems and Imaging, 1(2007), 349-369. | MR | Zbl

[111] Kocyigit, I., Acoustic-electric tomography and CGO solutions with internal data, Inverse Problems, 28(2012), 125004. | MR | Zbl

[112] Kohn, R., Shen, H., Vogelius, M. and Weinstein, M., Cloaking via change of variables in Electrical Impedance Tomography, Inverse Problems 24(2008), 015016 (21pp). | MR | Zbl

[113] Kohn, R. and Vogelius, M., Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, SIAM-AMS Proc., 14(1984). | MR | Zbl

[114] Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37(1984), 289–298. | MR | Zbl

[115] Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math., 38(1985), 643–667. | MR | Zbl

[116] Kolehmainen, V., Lassas, M., Ola, P., Inverse conductivity problem with an imperfectly known boundary, SIAM J. Appl. Math. 66(2005), 365–383. | MR | Zbl

[117] Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse problems for differential forms on Riemannian manifolds with boundary", Comm. PDE., 36(2011), 1475-1509. | MR | Zbl

[118] Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse problems with partial data for the magnetic Schrödinger operator in an infinite slab and on a bounded domain Comm. Math. Phys., 312(2012), 87-126. | MR | Zbl

[119] Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse boundary value problems for the polyharmonic operator, Journal Functional Analysis, 262(2012), 1781-1801. | MR | Zbl

[120] Krupchyk, K., Lassas, M. and Uhlmann, G, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, to appear Transactions AMS. | MR

[121] Krupchyk, K. and Uhlmann, G., Determining a magnetic Schrödinger operator with a bounded magnetic potential from boundary measurements, preprint.

[122] Lassas, M., Sharafutdinov, V. and Uhlmann, G., Semiglobal boundary rigidity for Riemannian metrics, Math. Annalen 325(2003), 767-793. | MR

[123] Lassas, M. and Uhlmann, G., Determining a Riemannian manifold from boundary measurements, Ann. Sci. École Norm. Sup., 34(2001), 771–787. | EuDML | Numdam | MR | Zbl

[124] Lassas, M., Taylor, M. and Uhlmann, G., The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11(2003), 207-222. | MR | Zbl

[125] Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. | MR | Zbl

[126] Leonhardt, U., Optical Conformal Mapping, Science 312 (2006), 1777-1780. | MR | Zbl

[127] Li, X. and Uhlmann, G., Inverse problems on a slab, Inverse Problems and Imaging, 4(2010), 449-462. | MR | Zbl

[128] Mandache, N., Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17(2001), 1435–1444. | MR | Zbl

[129] Melrose, R. B., Geometric scattering theory, Cambridge University Press, 1995. | MR | Zbl

[130] Michel, R., Sur la rigidité imposée par la longueur des géodésiques, Invent. Math., 65(1981), 71-83. | EuDML | MR | Zbl

[131] Michel, R., Restriction de la distance géodésique a un arc et rigidité. Bull. Soc. Math. France, 122(1994), 435–442. | EuDML | Numdam | MR | Zbl

[132] Mukhometov, R. G., The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian), Dokl. Akad. Nauk SSSR,232(1977), no. 1, 32–35. | MR | Zbl

[133] Mukhometov, R.G., On one problem of reconstruction of Riemannian metric (Russian), Siberian Math. Journal 22(1981), no. 3, 119–135. | Zbl

[134] Mukhometov, R.G. and Romanov, V.G., On the problem of finding an isotropic Riemannian metric in an n-dimensional space (Russian), Dokl. Akad. Nauk SSSR 243(1978), no. 1, 41–44. | MR | Zbl

[135] Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143(1996), 71-96. | MR | Zbl

[136] Nachman, A., Reconstructions from boundary measurements, Ann. of Math., 128(1988), 531–576. | MR | Zbl

[137] Nachman, A. and Ablowitz, N., A multidimensional inverse scattering method, Studies in App. Math., 71(1984), 243–250. | MR | Zbl

[138] Nachman, A. and Street, B., Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390. | MR | Zbl

[139] Nagayasu, S., Uhlmann, G. and Wang, J.-N., Depth dependent stability estimate in electrical impedance tomography, Inverse Problems, 25(2009), 075001. | MR | Zbl

[140] Nagayasu, S., Uhlmann, G. and Wang, J.-N., Reconstruction of penetrable obstacles in acoustics, SIAM J. Math. Anal., 43(2011), 189-211. | MR | Zbl

[141] Nagayasu, S, Uhlmann, G. and Wang, J.-N., Increasing stability for the acoustic equation, to appear Inverse Problems.

[142] Nakamura, G. and Tanuma, K., Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map, Inverse Problems, 17(2001), 405–419. | MR | Zbl

[143] Nakamura G. and Uhlmann, G., Global uniqueness for an inverse boundary value problem arising in elasticity, Invent. Math., 118(1994), 457–474. Erratum: Invent. Math., 152(2003), 205–207. | EuDML | Zbl

[144] Nakamura G., and Uhlmann, G., Inverse problems at the boundary for an elastic medium, SIAM J. Math. Anal., 26(1995), 263–279. | MR | Zbl

[145] Nakamura, G., Sun, Z. and Uhlmann, G., Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Annalen, 303(1995), 377–388. | EuDML | MR | Zbl

[146] Novikov R. G., Multidimensional inverse spectral problems for the equation -Δψ+(v(x)-Eu(x))ψ=0, Funktsionalny Analizi Ego Prilozheniya, 22(1988), 11-12, Translation in Functional Analysis and its Applications, 22(1988) 263–272. | MR | Zbl

[147] Novikov, R. G. and Henkin, G. M., The ¯-equation in the multidimensional inverse scattering problem, Russ. Math. Surv., 42(1987), 109–180. | MR | Zbl

[148] Ola, P., Päivärinta, L. and Somersalo, E., An inverse boundary value problem in electrodynamics, Duke Math. J., 70(1993), 617–653. | MR | Zbl

[149] Ola, P. and Somersalo, E. , Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J. Appl. Math., 56(1996), 1129-1145 | MR | Zbl

[150] Otal, J.P., Sur les longueur des géodésiques d’une métrique a courbure négative dans le disque, Comment. Math. Helv. 65(1990), 334–347. | EuDML | MR | Zbl

[151] Paternain, G., Salo, M. and Uhlmann, G., Tensor tomography on surfaces, to appear Inventiones Math. | MR

[152] Paternain, G., Salo, M. and Uhlmann, G., The attenuated ray transform for connections and Higgs fields, Geometric and Functional Analysis (GAFA), 22(2012), 1460-1489. | MR | Zbl

[153] Päivärinta, L., Panchenko, A. and Uhlmann, G., Complex geometrical optics for Lipschitz conductivities, Revista Matematica Iberoamericana, 19(2003), 57-72. | EuDML | MR | Zbl

[154] Pendry, J.B., Schurig, D. and Smith, D.R., Controlling electromagnetic fields, Science, 312, 1780 - 1782. | MR | Zbl

[155] L. Pestov, V.A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J. 29 (1988), 427–441. | MR | Zbl

[156] Pestov, L. and Uhlmann, G., Two dimensional simple Riemannian manifolds with boundary are boundary distance rigid,Annals of Math., 161(2005), 1089-1106. | MR | Zbl

[157] Pestov, L., and Uhlmann, G., The boundary distance function and the Dirichlet-to-Neumann map, Math. Research Letters, 11(2004), 285-298. | MR | Zbl

[158] Pestov, P., and Uhlmann, G., Characterization of the range and inversion formulas for the geodesic X-ray transform, International Mathematical Research Notices, 80(2004), 4331-4347. | MR | Zbl

[159] Petersen P., Riemannian Geometry, Springer-Verlag, 1998. | MR | Zbl

[160] Ramm, A. G., Recovery of the potential from fixed energy scattering data, Inverse Problems, 4(1988), 877-886. | MR | Zbl

[161] Rondi, L., A remark on a paper by G. Alessandrini and S. Vessella: “Lipschitz stability for the inverse conductivity problem" [Adv. in Appl. Math. 35 (2005), 207–241], Adv. in Appl. Math., 36(2006), 67–69. | MR | Zbl

[162] Romanov, V.G., Inverse Problems of Mathematical Physics, VNU Science Press, Utrech, the Netherlands, 1987. | MR

[163] Salo, M., Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. PDE, 31(2006), 1639-1666. | MR | Zbl

[164] Salo, M., Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139(2004), 67 pp. | MR | Zbl

[165] Salo, M. and Tzou, L., Inverse problems with partial data for a Dirac system: a Carleman estimate approach, Advances in Math., 225(2010), 487-513. | MR | Zbl

[166] Salo, M. and Wang, J.-N. , Complex spherical waves and inverse problems in unbounded domains, Inverse Problems 22(2006), 2299–2309. | MR | Zbl

[167] Santosa, F. and Vogelius, M., A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math., 50(1990), 216–243. | MR | Zbl

[168] Sharafutdinov, V., Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. | MR | Zbl

[169] V.A. Sharafutdinov, Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal. 17 (2007), 147–187. | MR | Zbl

[170] Sharafutdinov, V., Skokan, M. and Uhlmann, G., Regularity of ghosts in tensor tomography, Journal of Geometric Analysis, 15(2005), 517-560. | MR

[171] Sharafutdinov V. and Uhlmann, G., On deformation boundary rigidity and spectral rigidity for Riemannian surfaces with no focal points, Journal of Differential Geometry, 56 (2001), 93–110. | MR | Zbl

[172] Schurig, D., Mock, J., Justice, B., Cummer, S., Pendry, J., Starr, A. and Smith, D., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314(2006), 977-980.

[173] Siltanen, S., Müller, J. L. and Isaacson, D., A direct reconstruction algorithm for electrical impedance tomography, IEEE Transactions on Medical Imaging, 21(2002), 555-559.

[174] Sjöstrand, J., Singularités analytiques microlocales, Astérisque, 1985. | Numdam | Zbl

[175] Sjöstrand, J., Remark on extensions of the Watermelon theorem, Math. Res. Lett., 1(1994), 309–317. | MR | Zbl

[176] Somersalo, E., Isaacson, D. and Cheney, M., A linearized inverse boundary value problem for Maxwell’s equations, Journal of Comp. and Appl. Math., 42(1992),123-136. | MR | Zbl

[177] Stefanov, P. and Uhlmann, G., Multi-Wave Methods via Ultrasound, Inverse Problems and Applications, Inside Out II, MSRI Publications 60, Cambridge University Press (2012), 271-323 (ed. by G. Uhlmann).

[178] Stefanov, P. and Uhlmann, G., Recent progress on the boundary rigidity problem, Electr. Res. Announc. Amer. Math. Soc., 11(2005), 64-70. | EuDML | MR | Zbl

[179] Stefanov, P. and Uhlmann, G., Rigidity for metrics with the same lengths of geodesics, Math. Res. Lett., 5(1998), 83–96. | MR | Zbl

[180] Stefanov P. and Uhlmann, G., Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123(2004), 445–467. | MR | Zbl

[181] Stefanov, P. and Uhlmann, G., Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, International Math. Research Notices, 17(2005), 1047–1061. | MR | Zbl

[182] Stefanov, P. and Uhlmann, G, Boundary rigidity and stability for generic simple metrics, Journal Amer. Math. Soc., 18(2005), 975–1003. | MR | Zbl

[183] Stefanov, P. and Uhlmann, G, Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, American J. of Math., 130(2008), 239-268. | MR | Zbl

[184] Stefanov, P. and Uhlmann, G., Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differential Geometry, 82(2009), 383-409. | MR | Zbl

[185] Sun, Z., On a quasilinear boundary value problem, Math. Z.,221(1996), 293–305. | EuDML | MR | Zbl

[186] Sun, Z., An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. of AMS, 338 (1993), 953–969. | MR | Zbl

[187] Sun, Z., Conjectures in inverse boundary value problems for quasilinear elliptic equations, Cubo, 7(2005), 65–73. | MR | Zbl

[188] Sun, Z. and Uhlmann, G., Anisotropic inverse problems in two dimensions, Inverse Problems, 19(2003), 1001-1010. | MR | Zbl

[189] Sun, Z. and Uhlmann, G., Generic uniqueness for an inverse boundary value problem, Duke Math. Journal, 62(1991), 131–155. | MR | Zbl

[190] Sun, Z. amd Uhlmann, G., Inverse problems in quasilinear anisotropic media, Amer. J. Math., 119(1997), 771-797. | MR | Zbl

[191] Sylvester, J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43(1990), 201–232. | MR | Zbl

[192] Sylvester, J. and Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153–169. | MR | Zbl

[193] Sylvester, J. and Uhlmann, G., A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39(1986), 92–112. | MR | Zbl

[194] Sylvester, J. and Uhlmann, G., Inverse boundary value problems at the boundary – continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197–221. | MR | Zbl

[195] Sylvester, J. and Uhlmann, G., Inverse problems in anisotropic media, Contemp. Math., 122(1991), 105–117. | MR | Zbl

[196] Takuwa, H., Uhlmann, G. and Wang, J.-N., Complex geometrical optics solutions for anisotropic equations and applications, Journal of Inverse and Ill Posed Problems, 16(2008), 791-804. | MR | Zbl

[197] Tataru, D., Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem, Comm. P.D.E. 20(1995), 855–884. | MR | Zbl

[198] Treves, F., Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1. Pseudodifferential Operators. The University Series in Mathematics, Plenum Press, New York–London, 1980. | MR | Zbl

[199] Tsai, T. Y., The Schrödinger equation in the plane, Inverse Problems, 9(1993), 763–787. | Zbl

[200] Tolmasky, C., Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian, SIAM J. Math. Anal., 29(1998), 116–133. | MR | Zbl

[201] Tzou, L., Stability estimates for coefficients of magnetic Schrödinger equation from full and partial measurements, Comm. PDE, 33(2008), 161-184. | MR | Zbl

[202] Uhlmann, G., Inverse boundary value problems for partial differential equations, Documenta Mathematica, Extra Volume ICM 98, Vol III(1998) 77–86. | EuDML | MR | Zbl

[203] Uhlmann, G., Inverse boundary value problems and applications, Astérisque, 207(1992), 153–211. | MR | Zbl

[204] Uhlmann, G., Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press(1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. | MR | Zbl

[205] Uhlmann, G., Scattering by a metric, Chap. 6.1.5, in Encyclopedia on Scattering, Academic Pr., R. Pike and P. Sabatier, eds. (2002), 1668-1677.

[206] Uhlmann G., The Cauchy data and the scattering relation, Geometric methods in inverse problems and PDE control, 263–287, IMA Vol. Math. Appl., 137, Springer, New York, 2004. | MR | Zbl

[207] Uhlmann, G. and Vasy A., Low-energy inverse problems in three-body scattering, Inverse Problems, 18(2002), 719–736. | MR | Zbl

[208] Uhlmann, G. and Wang, J.-N., Complex spherical waves for the elasticity system and probing of inclusions, SIAM J. Math. Anal., 38(2007), 1967–1980. | MR | Zbl

[209] Uhlmann, G. and Wang, J.-N., Reconstruction of discontinuities in systems, SIAM J. Appl. Math., 28(2008), 1026-1044. | MR | Zbl

[210] Uhlmann, G., Wang, J.-N and Wu, C. T., Reconstruction of inclusions in an elastic body, Journal de Mathématiques Pures et Appliquées, 91(2009), 569-582. | MR | Zbl

[211] Wang, J.-N., Stability for the reconstruction of a Riemannian metric by boundary measurements, Inverse Probl., 15(1999), 1177–1192. | MR | Zbl

[212] E. Wiechert and K. Zoeppritz, Uber erdbebenwellen, Nachr. Koenigl. Geselschaft Wiss, Goettingen, 4(1907), 415-549. | EuDML

[213] Zhdanov, M. S. Keller, G. V., The geoelectrical methods in geophysical exploration, Methods in Geochemistry and Geophysics, 31(1994), Elsevier.

[214] Zhou, T., Reconstructing electromagnetic obstacles by the enclosure method, Inverse Problems and Imaging. | MR | Zbl

[215] Zou, Y. and Guo, Z, A review of electrical impedance techniques for breast cancer detection, Med. Eng. Phys., 25(2003), 79-90.

Cité par Sources :