Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
[Comportement asymptotique en temps des solutions de l’équation de Navier-Stokes dans un domaine extérieur du plan]
Journées équations aux dérivées partielles (2012), article no. 3, 17 p.

Nous étudions le comportement asymptotique en temps des solutions de l’équation de Navier-Stokes incompressible dans un domaine extérieur du plan, avec condition de non-glissement à la frontière. Les données initiales que nous considérons sont des perturbations d’énergie finie d’un tourbillon régulier dont la circulation à l’infini est petite, mais nous n’imposons aucune autre restriction à leur taille. En utilisant une estimation d’énergie logarithmique et des arguments d’interpolation, nous montrons que la solution converge lorsque t vers un tourbillon d’Oseen autosimilaire. Ce résultat a été obtenu en collaboration avec Y. Maekawa (Université de Kobe).

We study the long-time behavior of infinite-energy solutions to the incompressible Navier-Stokes equations in a two-dimensional exterior domain, with no-slip boundary conditions. The initial data we consider are finite-energy perturbations of a smooth vortex with small circulation at infinity, but are otherwise arbitrarily large. Using a logarithmic energy estimate and some interpolation arguments, we prove that the solution approaches a self-similar Oseen vortex as t. This result was obtained in collaboration with Y. Maekawa (Kobe University).

DOI : 10.5802/jedp.86
Classification : 35Q30, 35B35, 76D05, 76D17
Keywords: Navier-Stokes equation, long-time behavior, exterior domain
Mot clés : Equation de Navier-Stokes, comportement asymptotique, domaine extérieur
Gallay, Thierry 1

1 Institut Fourier Université de Grenoble 1 100, rue des Maths, B.P. 74 38402 Saint-Martin-d’Hères, France
@article{JEDP_2012____A3_0,
     author = {Gallay, Thierry},
     title = {Long-Time {Asymptotics} for the {Navier-Stokes} {Equation} in a {Two-Dimensional} {Exterior} {Domain}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {3},
     pages = {1--17},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2012},
     doi = {10.5802/jedp.86},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.86/}
}
TY  - JOUR
AU  - Gallay, Thierry
TI  - Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
JO  - Journées équations aux dérivées partielles
PY  - 2012
SP  - 1
EP  - 17
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.86/
DO  - 10.5802/jedp.86
LA  - en
ID  - JEDP_2012____A3_0
ER  - 
%0 Journal Article
%A Gallay, Thierry
%T Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain
%J Journées équations aux dérivées partielles
%D 2012
%P 1-17
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.86/
%R 10.5802/jedp.86
%G en
%F JEDP_2012____A3_0
Gallay, Thierry. Long-Time Asymptotics for the Navier-Stokes Equation in a Two-Dimensional Exterior Domain. Journées équations aux dérivées partielles (2012), article  no. 3, 17 p. doi : 10.5802/jedp.86. http://www.numdam.org/articles/10.5802/jedp.86/

[1] Bae, H.; Jin, B. Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., Volume 240 (2006) no. 2, pp. 508-529 | MR | Zbl

[2] Bedrossian, J.; Masmoudi, N. Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in 2 with Measure-valued Initial Data (2012) (Preprint arXiv:1205.1551)

[3] Bergh, J.; Löfström, J. Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976 (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR | Zbl

[4] Borchers, W.; Miyakawa, T. L 2 -decay for Navier-Stokes flows in unbounded domains, with application to exterior stationary flows, Arch. Rational Mech. Anal., Volume 118 (1992) no. 3, pp. 273-295 | MR | Zbl

[5] Carpio, A. Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations, Volume 19 (1994) no. 5-6, pp. 827-872 | MR | Zbl

[6] Constantin, P.; Foias, C. Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988 | MR | Zbl

[7] Dan, W.; Shibata, Y. On the L q L r estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan, Volume 51 (1999) no. 1, pp. 181-207 | MR | Zbl

[8] Dan, W.; Shibata, Y. Remark on the L q -L estimate of the Stokes semigroup in a 2-dimensional exterior domain, Pacific J. Math., Volume 189 (1999) no. 2, pp. 223-239 | MR | Zbl

[9] Fujita, H.; Kato, T. On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 | MR | Zbl

[10] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations, Springer Monographs in Mathematics, Springer, New York, 2011 (Steady-state problems) | MR | Zbl

[11] Gallagher, I.; Gallay, Th. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., Volume 332 (2005) no. 2, pp. 287-327 | MR | Zbl

[12] Gallay, Th.; Maekawa, Y. Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity (2012) (Preprint arXiv:1202.4969) | MR

[13] Gallay, Th.; Wayne, C. E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys., Volume 255 (2005) no. 1, pp. 97-129 | MR | Zbl

[14] Giga, Y.; Miyakawa, T.; Osada, H. Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., Volume 104 (1988) no. 3, pp. 223-250 | MR | Zbl

[15] He, C.; Miyakawa, T. Nonstationary Navier-Stokes flows in a two-dimensional exterior domain with rotational symmetries, Indiana Univ. Math. J., Volume 55 (2006) no. 5, pp. 1483-1555 | MR | Zbl

[16] He, C.; Miyakawa, T. On two-dimensional Navier-Stokes flows with rotational symmetries, Funkcial. Ekvac., Volume 49 (2006) no. 2, pp. 163-192 | MR | Zbl

[17] Iftimie, D.; Lopes Filho, M.; Nussenzveig Lopes, H. Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | MR | Zbl

[18] Iftimie, G.; Karch, G.; Lacave, Ch. Self-similar asymptotics of solutions to the Navier-Stokes system in two dimensional exterior domain (2011) (Preprint arXiv:1107.2054)

[19] Kato, T.; Fujita, H. On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR | Zbl

[20] Kozono, H. L 1 -solutions of the Navier-Stokes equations in exterior domains, Math. Ann., Volume 312 (1998) no. 2, pp. 319-340 | MR | Zbl

[21] Kozono, H.; Ogawa, T. Decay properties of strong solutions for the Navier-Stokes equations in two-dimensional unbounded domains, Arch. Rational Mech. Anal., Volume 122 (1993) no. 1, pp. 1-17 | MR | Zbl

[22] Kozono, H.; Ogawa, T. Two-dimensional Navier-Stokes flow in unbounded domains, Math. Ann., Volume 297 (1993) no. 1, pp. 1-31 | MR | Zbl

[23] Kozono, H.; Yamazaki, M. Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n, , Houston J. Math., Volume 21 (1995) no. 4, pp. 755-799 | MR | Zbl

[24] Ladyženskaja, O. A. Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Comm. Pure Appl. Math., Volume 12 (1959), pp. 427-433 | MR | Zbl

[25] Leray, J. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appliquées 9ème série, Volume 12 (1933), pp. 1-82 | Numdam | Zbl

[26] Leray, J. Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appliquées 9ème série, Volume 13 (1934), pp. 331-418

[27] Lions, J.-L.; Prodi, G. Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, Volume 248 (1959), pp. 3519-3521 | MR | Zbl

[28] Masuda, K. Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), Volume 36 (1984) no. 4, pp. 623-646 | MR | Zbl

Cité par Sources :